SOLUTION TO PROBLEM 5.2 (C)

CHRISTOPHER J. HILLAR

ABSTRACT. We present a solution to the following problem: Let ay,...,an € C
and suppose that S(k) = 37 ; a;* € Z for all k € P. Then,

H; (t —a;) € Z[t].

1. NEWTON POLYNOMIALS AND SYMMETRIC FUNCTIONS

The problem above gives a converse to the following fact. Let o be an algebraic
integer (a root of a monic polynomial, g(¢t) € Z[t]), then if ay,...,a, € C are the
conjugates of this polynomial (all its roots), then S(k) € Z. This is an easier impli-
cation since the polynomial f(z1,...,2,) = > i, ;¥ is symmetric and thus can be
written (over Z) in terms of the elementary symmetric polynomials. Substituting
(a1, ...,ap) for (x1,...,2,) in f gives us the result (as the coefficients of g are the
elementary symmetric polynomials evaluated at (aq,...,a,)).

We will first prove that g(¢t) = []\_, (t — a;) is a polynomial in Q[¢]. This will
follow from Newton’s famous identities relating the coefficients of ¢(t) to the values

of S(k).
Theorem 1.1. (Newton’s Identities) Let aq,...,a, € C and let
— " —_a.) = " n—1
g(t> _Hi:1 (t az) t +pn—1t ++p0
Then,

S(k)ﬁLpn_lS(k*l)+...+pn_k+1S(1)+kpn—k:0 for k<n
Sk)+pn1Sk—1)+...+p1Sk—n+1)+pySk—n)=0 for k>n

For clarity, we write a few of these identities down:
S(l) +Pp_1 = 0, 5(2) +pn_1S(1) + 2pn_2 =0.

Proof. For simplicity, we define S(0) = n. We will prove the claim by evaluating
¢'(t) in two ways. Notice that on the one hand we have

J(t) = nt" 4 (0= Dpurt™ . 41,
On the other hand, since g(t) = [[;—, (t — a;) we have

g/(t) = Z:;l (tg_(tii)
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Viewing this expression as a Laurent series (in the variable t), we may expand

0D BRI

(t —a;)
(t)/t) Z Z (ai/t)?
(t)/t) Z Z (a;/t)?
=t (ijop”’jt_ ) (Z:(J S(J)t_])

in which p, =1 and p; = 0 for i < 0. Writing this last expression more construc-

tively, we have
_ n—1 —k
=t Zk Ot Zl 0 pn k+i

Equating coefficients of both series for ¢'(¢), we arrive at

So then,

k
o S()pn—tti = (0 — k)pn_r.
Since S(0)py,—r = npn—_k, the formulas in the theorem drop out. O

Using Newton’s identities, we have p, 1 = —S(1) € Z, 2p, 2 = —S(2)—p,—15(1) €
Z, and in general, nlp; € Z for all i = 0,...,n — 1. This not only proves that
g(t) € Q[t], but also much more. Since each of a; is algebraic over Q and nlp; € Z,
there is a constant ¢,, (only depending on n) such that each of ¢,a; is an algebraic
integer (we can actually choose ¢, = (n!)™). We will now prove that, in fact, each a;
is an algebraic integer. This will prove the claim that g(¢) € Z[¢] since then we can
express each p; as an elementary symmetric polynomial in the a;. Since algebraic
integers form a ring and the only elements of Q that are algebraic integers are
elements of Z we must have p; € Z.

Let r € P and notice that af,...,a! satisfy the hypothesis that Y . ; (a;" Woe Z
for all k& € P. Whence, [], (t —a;") € Q[t] and that, moreover, each of cha
(r = 1,2,...) is an algebraic integer. We will now show that {1,a;,a?,. } is

a finitely generated Z-module which will finally prove that each a; is an algebralc
integer and complete the proof. Let ¢ denote the ring of algebraic integers of Q(a;).
By well-known results in number theory, this ring is a finitely generated Z-module
and hence (1/cn)¥ is a finitely generated Z-module. The Z-module generated by
{1,a;,a2,...} is contained in (1/c,)d, and hence is finitely generated (since any
submodule of a finitely generated module over a principal ideal domain is finitely
generated), completing the proof.



