
SOLUTION TO PROBLEM 5.2 (C)

CHRISTOPHER J. HILLAR

Abstract. We present a solution to the following problem: Let a1, . . . , an ∈ C
and suppose that S(k) =

∑n
i=1 ai

k ∈ Z for all k ∈ P. Then,∏n

i=1
(t− ai) ∈ Z[t].

1. Newton Polynomials and Symmetric Functions

The problem above gives a converse to the following fact. Let α be an algebraic
integer (a root of a monic polynomial, g(t) ∈ Z[t]), then if a1, . . . , an ∈ C are the
conjugates of this polynomial (all its roots), then S(k) ∈ Z. This is an easier impli-
cation since the polynomial f(x1, . . . , xn) =

∑n
i=1 xi

k is symmetric and thus can be
written (over Z) in terms of the elementary symmetric polynomials. Substituting
(a1, . . . , an) for (x1, . . . , xn) in f gives us the result (as the coefficients of g are the
elementary symmetric polynomials evaluated at (a1, . . . , an)).

We will first prove that g(t) =
∏n

i=1 (t− ai) is a polynomial in Q[t]. This will
follow from Newton’s famous identities relating the coefficients of g(t) to the values
of S(k).

Theorem 1.1. (Newton’s Identities) Let a1, . . . , an ∈ C and let

g(t) =
∏n

i=1
(t− ai) = tn + pn−1t

n−1 + . . . + p0.

Then,

S(k) + pn−1S(k − 1) + . . . + pn−k+1S(1) + kpn−k = 0 for k < n

S(k) + pn−1S(k − 1) + . . . + p1S(k − n + 1) + p0S(k − n) = 0 for k ≥ n

For clarity, we write a few of these identities down:

S(1) + pn−1 = 0, S(2) + pn−1S(1) + 2pn−2 = 0.

Proof. For simplicity, we define S(0) = n. We will prove the claim by evaluating
g′(t) in two ways. Notice that on the one hand we have

g′(t) = ntn−1 + (n− 1)pn−1t
n−2 + . . . + p1.

On the other hand, since g(t) =
∏n

i=1 (t− ai) we have

g′(t) =
∑n

i=1

g(t)
(t− ai)
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Viewing this expression as a Laurent series (in the variable t), we may expand
1

(t− ai)
= (1/t)

∑∞

j=0
(ai/t)j

So then,
g′(t) = (g(t)/t)

∑n

i=1

∑∞

j=0
(ai/t)j

= (g(t)/t)
∑∞

j=0

∑n

i=1
(ai/t)j

= tn−1
(∑∞

j=0
pn−jt

−j
) (∑∞

j=0
S(j)t−j

)
in which pn = 1 and pi = 0 for i < 0. Writing this last expression more construc-
tively, we have

g′(t) = tn−1
∑∞

k=0
t−k

∑k

i=0
S(i)pn−k+i

Equating coefficients of both series for g′(t), we arrive at∑k

i=0
S(i)pn−k+i = (n− k)pn−k.

Since S(0)pn−k = npn−k, the formulas in the theorem drop out. �

Using Newton’s identities, we have pn−1 = −S(1) ∈ Z, 2pn−2 = −S(2)−pn−1S(1) ∈
Z, and in general, n!pi ∈ Z for all i = 0, . . . , n − 1. This not only proves that
g(t) ∈ Q[t], but also much more. Since each of ai is algebraic over Q and n!pi ∈ Z,
there is a constant cn (only depending on n) such that each of cnai is an algebraic
integer (we can actually choose cn = (n!)n). We will now prove that, in fact, each ai

is an algebraic integer. This will prove the claim that g(t) ∈ Z[t] since then we can
express each pi as an elementary symmetric polynomial in the ai. Since algebraic
integers form a ring and the only elements of Q that are algebraic integers are
elements of Z we must have pi ∈ Z.

Let r ∈ P and notice that ar
1, . . . , a

r
n satisfy the hypothesis that

∑n
i=1 (ai

r)k ∈ Z
for all k ∈ P. Whence,

∏n
i=1 (t− ai

r) ∈ Q[t] and that, moreover, each of cnar
i

(r = 1, 2, . . .) is an algebraic integer. We will now show that {1, ai, a
2
i , . . .} is

a finitely generated Z-module which will finally prove that each ai is an algebraic
integer and complete the proof. Let ϑ denote the ring of algebraic integers of Q(ai).
By well-known results in number theory, this ring is a finitely generated Z-module
and hence (1/cn)ϑ is a finitely generated Z-module. The Z-module generated by
{1, ai, a

2
i , . . .} is contained in (1/cn)ϑ, and hence is finitely generated (since any

submodule of a finitely generated module over a principal ideal domain is finitely
generated), completing the proof.


