MARCH 1999 MONTHLY PROBLEM

CHRISTOPHER J. HILLAR

Abstract. [10723] Proposed by Christopher J. Hillar. Prove that for all primes $p>2$,

$$
\sum_{i=1}^{p-1} 2^{i} \cdot i^{p-2} \equiv \sum_{i=1}^{(p-1) / 2} i^{p-2}(\bmod p)
$$

1. Solution

Proof. First of all, we note the following identity for all n :

$$
\sum_{i=1}^{n} \frac{1+\binom{n}{i}-2^{i}}{i}=0
$$

This can be shown in many ways. One such way is induction. As usual assume it is true for some n, since it's clearly true for $n=1$. So,

$$
\begin{gathered}
\sum_{i=1}^{n+1} \frac{1+\binom{n+1}{i}-2^{i}}{i}=\frac{2-2^{n+1}}{n+1}+\sum_{i=1}^{n} \frac{1+\binom{n}{i}+\binom{n}{i-1}-2^{i}}{i} \\
=\frac{2-2^{n+1}}{n+1}+\sum_{i=1}^{n} \frac{\binom{n}{i-1}}{i}=\frac{2-2^{n+1}}{n+1}+\frac{1}{n+1} \sum_{i=1}^{n}\binom{n+1}{i} \\
=\frac{2-2^{n+1}}{n+1}+\frac{1}{n+1}\left(2^{n+1}-2\right)=0 .
\end{gathered}
$$

Therefore, the identity is true for all n. So we have that,

$$
\sum_{i=1}^{n} 2^{i} \cdot i^{-1}=\sum_{i=1}^{n} i^{-1}+\sum_{i=1}^{n}\binom{n}{i} \cdot i^{-1}
$$

Now, one can easily see that if $n=p-1$, where p is prime, then the harmonic sum on the right hand side above is congruent to zero $\bmod p$. This is because every integer from 1 to $p-1$ is covered by some inverse $\bmod p$. I.e.

$$
\sum_{i=1}^{p-1} i^{-1} \equiv(1+2+3+\ldots+(p-1)) \equiv \frac{p \cdot(p-1)}{2} \equiv 0(\bmod p)
$$

Department of Mathematics, University of California, Berkeley, CA 94720. (chillar@math.berkeley.edu).

Since $i^{-1} \equiv i^{p-2}(\bmod p)$, the original sum is congruent to

$$
\begin{gathered}
\sum_{i=1}^{p-1}\binom{p-1}{i} \cdot i^{-1} \equiv \sum_{i=1}^{p-1}(-1)^{i} \cdot i^{-1} \equiv \sum_{i=1}^{p-1}(-1)^{i} \cdot i^{-1}+\sum_{i=1}^{p-1} i^{-1} \\
\equiv 2 \cdot \sum_{i=1}^{(p-1) / 2}(2 i)^{-1} \equiv \sum_{i=1}^{(p-1) / 2} i^{-1} \equiv \sum_{i=1}^{(p-1) / 2} i^{p-2}(\bmod p)
\end{gathered}
$$

