MAY 2001 MONTHLY PROBLEM

CHRISTOPHER J. HILLAR

Abstract. [10873] Proposed by B.J. Venkatachala. Find all non-negative
integer solutions to

$$
3^{m}=2 n^{2}+1 .
$$

$$
3^{m}=2 n^{2}+1
$$

1. Solution

All solutions are given by $(m, n)=(0,0),(1,1),(2,2),(5,11)$.
Proof. Suppose m is even. Then, the equation is equivalent to

$$
\left(3^{m / 2}\right)^{2}-2 n^{2}=1
$$

Setting $t=3^{m / 2}$, this is just the well-known Pell equation. The solutions (t, n) are given by

$$
t+n \sqrt{2}=(3+2 \sqrt{2})^{k}
$$

It is a simple matter to see that $\left(t_{k}, n_{k}\right)=\left(6 t_{k-1}-t_{k-2}, 6 n_{k-1}-n_{k-2}\right)$ for $k>1$, where $\left(t_{1}, n_{1}\right)=(3,2),\left(t_{0}, n_{0}\right)=(1,0)$. Hence, mod 9 , we have t_{k} cycles as $\{1,3,8,0,1,6,8,6,1,0,8,3\}$. And, $\bmod 11$, we have the cycle as $\{1,3,6,0,5,8,10,8,5,0,6,3\}$. This shows that if t_{k} is divisible by 9 , it will also be divisible by 11 . Therefore, the only solutions with m even are given by $(m, n)=(0,0)$ and $(2,2)$.

Now, suppose m is odd. Hence, we have the Pell equation, where $t=3^{(m+1) / 2}$,

$$
t^{2}-6 n^{2}=3
$$

Elementary considerations (for instance, see LeVeque, Fundamentals of Number Theory, 1977, p.204), give all solutions to this equation as

$$
t+n \sqrt{6}=(3+\sqrt{6})(5+2 \sqrt{6})^{k}=(3+\sqrt{6})\left(a_{n}+b_{n} \sqrt{6}\right)
$$

Where $\left(a_{k}, b_{k}\right)=\left(10 a_{k-1}-a_{k-2}, 10 b_{k-1}-b_{k-2}\right)$ for $k>1$, where $\left(a_{1}, b_{1}\right)=(5,2)$, $\left(a_{0}, b_{0}\right)=(1,0)$. Therefore, all solutions $\left(t_{k}, n_{k}\right)$ are given by $\left(3 a_{n}+6 b_{n}, 3 b_{n}+a_{n}\right)$. This gives us that $\left(t_{k}, n_{k}\right)=\left(10 t_{k-1}-t_{k-2}, 10 n_{k-1}-n_{k-2}\right)$ for $k>1$, where $\left(t_{1}, n_{1}\right)$ $=(27,11),\left(t_{0}, n_{0}\right)=(3,1)$. An examination as before, this time with mod 7 and $\bmod 9$ shows that if $t_{k}(k>1)$ is divisible by 9 , it will also be divisible by 7 . Hence, the only solutions with m odd are $(m, n)=(1,1)$ and $(5,11)$.

[^0]
[^0]: Department of Mathematics, University of California, Berkeley, CA 94720. (chillar@math.berkeley.edu).

