## MARCH 2002 MATHEMATICAL MONTHLY PROBLEM

CHRISTOPHER J. HILLAR

> AbSTRACT. [10928] Proposed by Christopher J. Hillar. Let $a_{n}$ be a sequence of positive real numbers such that $\sum_{i=1}^{\infty} a_{n}$ converges. Then, (a) Prove that $\sum_{i=1}^{\infty} a_{n}^{\log n /(1+\log n)}$ converges. (b) Prove or disprove: If $b_{n}$ is an increasing sequence of positive real numbers tending to 1 , then $\sum_{i=1}^{\infty} a_{n}^{b_{n}}$ converges.

## 1. Solution

(a) Let $f(n)=\frac{\ln n}{1+\ln n}$ and suppose $w \in\{1,2, \ldots\}$. Examine the equality,

$$
\begin{equation*}
\left(w a_{n}\right)^{f(n)}\left(\left(\frac{1}{w}\right)^{\frac{f(n)}{1-f(n)}}\right)^{1-f(n)}=a_{n}^{f(n)} \tag{1.1}
\end{equation*}
$$

Now, a form of Holder's Inequality states that if $x, y>0$ and $a+b=1$, then $x^{a} y^{b} \leq a x+b y$. Hence, (1.1) gives us that

$$
\begin{equation*}
a_{n}^{f(n)} \leq w a_{n} f(n)+(1-f(n))\left(\frac{1}{w}\right)^{\frac{f(n)}{1-f(n)}} \tag{1.2}
\end{equation*}
$$

Next, notice that

$$
(1-f(n))\left(\frac{1}{w}\right)^{\frac{f(n)}{1-f(n)}}=\left(\frac{1}{1+\ln n}\right)\left(\frac{1}{w}\right)^{\ln n}=\left(\frac{1}{1+\ln n}\right) n^{\ln \left(w^{-1}\right)}
$$

Now, choose $w$ large enough so that $\left(\ln w^{-1}\right)<-1$ ( $w=3$ will do). Hence, both parts of right hand side of (1.2) have convergent sums. In fact,

$$
\sum a_{n}^{f(n)} \leq w \sum a_{n}+\sum n^{\ln \left(w^{-1}\right)}<\infty
$$

(b) We will show a counterexample with the sequence, $a_{n}=1 /\left(n(\ln n)^{2}\right)$ and the function, $g(n)=\frac{\ln \ln n}{1+\ln \ln n}$. Indeed, a simple calculation reveals that

$$
\left(\frac{1}{n(\ln n)^{2}}\right)^{\frac{\frac{\ln \ln n}{1+\ln \ln n}}{}=\frac{1}{(\ln n)^{\frac{\ln n}{1+\ln \ln n}}(\ln n)^{\frac{2 \ln \ln n}{1+\ln \ln n}}}=\frac{1}{(\ln n)^{\frac{\ln n+2 \ln \ln n}{1+\ln \ln n}}} \text {. }}
$$

But for sufficiently large $n$ (in fact, $n>2^{128}$ ), we have

$$
\frac{\ln n+2 \ln \ln n}{1+\ln \ln n}<\frac{\ln n}{\ln \ln n}
$$

Department of Mathematics, University of California, Berkeley, CA 94720. (chillar@math.berkeley.edu).

Hence,

$$
\frac{1}{(\ln n)^{\frac{\ln n+2 \ln \ln n}{1+\ln \ln n}}} \geq \frac{1}{(\ln n)^{\frac{\ln n}{\ln \ln n}}}=\frac{1}{n}
$$

Therefore, $\sum a_{n}{ }^{g(n)}$ diverges.

