MATHEMATICAL MONTHLY PROBLEM SOLUTION

CHRISTOPHER J. HILLAR

Abstract

Proposed by Götz Trenkler. Let P and Q be Hermitian idempotent n-by- n matrices with complex entries. That is, each is equal to its own square and its own conjugate transpose. Show that $P Q$ shares these properties if and only if the trace of $P Q P Q$ is equal to the trace of $P Q$.

1. Solution

One direction is obvious. As for the converse, suppose that $\operatorname{Tr}[P Q P Q-P Q]$ is zero. Consider now $\operatorname{Tr}\left[(Q P-P Q)(Q P-P Q)^{*}\right]$, which is zero if and only if $Q P-P Q=0$ (since $\operatorname{Tr}\left[A A^{*}\right]$ is the sum of the squares of the absolute values of the entries of A).

An easy computation using the assumptions does indeed give us 0 for such a trace:

$$
\begin{aligned}
\operatorname{Tr}\left[(Q P-P Q)(Q P-P Q)^{*}\right] & =\operatorname{Tr}\left[Q P^{2} Q-Q P Q P-P Q P Q+P Q^{2} P\right] \\
& =\operatorname{Tr}[Q P Q]-\operatorname{Tr}[Q P Q P]-\operatorname{Tr}[P Q P Q]+\operatorname{Tr}[P Q P] \\
& =2 \operatorname{Tr}[P Q]-2 \operatorname{Tr}[P Q P Q] \\
& =0
\end{aligned}
$$

by assumption and repeatedly using the fact that $\operatorname{Tr}[A B]=\operatorname{Tr}[B A]$. It follows, therefore, that

$$
Q P-P Q=0
$$

which solves the problem.
Department of Mathematics, University of California, Berkeley, CA 94720
E-mail address: chillar@math.berkeley.edu

