11077: THE ASYMPTOTIC BEHAVIOR OF A CERTAIN SUM

CHRISTOPHER J. HILLAR

ABSTRACT. [11077] Let $x_n = \sum_{i=0}^{n-1} (-1)^i {n \choose i} \frac{2^{n-i}-1}{n-i}$. Find the asymptotic behavior of x_n .

1. SOLUTION

We prove that

$$\sum_{i=0}^{n-1} (-1)^i \binom{n}{i} \frac{2^{n-i}-1}{n-i} = (-1)^n \sum_{j=1}^n \frac{(-1)^j}{j}.$$

This shows that x_n tends to $(-1)^n \ln 2$. First preprocess (by replacing n - i with j) the given equation so that we need only show:

$$\sum_{j=1}^{n} (-1)^{j} \binom{n}{j} \frac{2^{j} - 1}{j} = \sum_{j=1}^{n} \frac{(-1)^{j}}{j}.$$

Clearly, the relation holds for n = 1 as both sides are -1. Writing y_n for the right-hand-side (and z_n for the left-hand-side), notice that $y_n = y_{n-1} + (-1)^n/n$. Since z_1 and y_1 agree, it suffices to verify that z_n satisfies the same recurrence as y_n . Examine the difference

$$z_{n+1} - z_n = \sum_{j=1}^{n+1} (-1)^j {\binom{n}{j-1}} \frac{2^j - 1}{j}$$

= $\frac{1}{n+1} \sum_{j=1}^{n+1} (-1)^j {\binom{n+1}{j}} (2^j - 1)$
(1.1)
= $\frac{1}{n+1} \left[\sum_{j=1}^{n+1} (-1)^j {\binom{n+1}{j}} 2^j - \sum_{j=1}^{n+1} (-1)^j {\binom{n+1}{j}} \right]$
= $\frac{1}{n+1} \left[(1-2)^{n+1} - 1 - ((1-1)^{n+1} - 1) \right]$
= $\frac{1}{n+1} (-1)^{n+1}.$

This completes the proof.

Department of Mathematics, University of California, Berkeley, CA 94720 $E\text{-}mail \ address: chillar@math.berkeley.edu$