11077: THE ASYMPTOTIC BEHAVIOR OF A CERTAIN SUM

CHRISTOPHER J. HILLAR

Abstract. [11077] Let $x_{n}=\sum_{i=0}^{n-1}(-1)^{i}\binom{n}{i} \frac{2^{n-i}-1}{n-i}$. Find the asymptotic behavior of x_{n}.

1. SOLUTION

We prove that

$$
\sum_{i=0}^{n-1}(-1)^{i}\binom{n}{i} \frac{2^{n-i}-1}{n-i}=(-1)^{n} \sum_{j=1}^{n} \frac{(-1)^{j}}{j}
$$

This shows that x_{n} tends to $(-1)^{n} \ln 2$. First preprocess (by replacing $n-i$ with j) the given equation so that we need only show:

$$
\sum_{j=1}^{n}(-1)^{j}\binom{n}{j} \frac{2^{j}-1}{j}=\sum_{j=1}^{n} \frac{(-1)^{j}}{j}
$$

Clearly, the relation holds for $n=1$ as both sides are -1 . Writing y_{n} for the right-hand-side (and z_{n} for the left-hand-side), notice that $y_{n}=y_{n-1}+(-1)^{n} / n$. Since z_{1} and y_{1} agree, it suffices to verify that z_{n} satisfies the same recurrence as y_{n}. Examine the difference

$$
\begin{align*}
z_{n+1}-z_{n} & =\sum_{j=1}^{n+1}(-1)^{j}\binom{n}{j-1} \frac{2^{j}-1}{j} \\
& =\frac{1}{n+1} \sum_{j=1}^{n+1}(-1)^{j}\binom{n+1}{j}\left(2^{j}-1\right) \\
& =\frac{1}{n+1}\left[\sum_{j=1}^{n+1}(-1)^{j}\binom{n+1}{j} 2^{j}-\sum_{j=1}^{n+1}(-1)^{j}\binom{n+1}{j}\right] \tag{1.1}\\
& =\frac{1}{n+1}\left[(1-2)^{n+1}-1-\left((1-1)^{n+1}-1\right)\right] \\
& =\frac{1}{n+1}(-1)^{n+1} .
\end{align*}
$$

This completes the proof.
Department of Mathematics, University of California, Berkeley, CA 94720
E-mail address: chillar@math.berkeley.edu

