MATHEMATICAL MONTHLY PROBLEM SOLUTION

CHRISTOPHER J. HILLAR

Abstract

Proposed by Matthias Beck, Jesus DeLoera, Mike Develin, and Julian Pfeifle. Let d be a positive integer, t_{1}, \ldots, t_{d} be integers, and $\lambda_{1}, \ldots, \lambda_{d}$ be real numbers. Prove that if $\sum_{k=1}^{d} \lambda_{k} t_{k}^{j}$ is an integer for $1 \leq j<d$, then also $\sum_{k=1}^{d} \lambda_{k} t_{k}^{d}$ is an integer.

1. Solution

The statement as published is false. Take for example $d=2, t_{1}=2, t_{2}=-1$, $\lambda_{1}=\sqrt{2} / 2, \lambda_{2}=\sqrt{2}$. Then, $\sum_{k=1}^{2} \lambda_{k} t_{k}=0$ is an integer whereas $\sum_{k=1}^{2} \lambda_{k} t_{k}^{2}=3 \sqrt{2}$ is not. One fix (see below for another) is to add the additional assumption that $\lambda_{1}+\cdots+\lambda_{d}$ is also an integer, and with this in place, we argue as follows.

Let $a_{n}=\sum_{k=1}^{d} \lambda_{k} t_{k}^{n}$ for $n \geq 1$, and define $a_{0}=\lambda_{1}+\cdots+\lambda_{d}$. From the elementary theory of linear recurrences, this sequence satisfies:

$$
a_{n+d}=\sum_{i=1}^{d}(-1)^{i-1} e_{i} a_{n+d-i}
$$

in which $e_{i}=e_{i}\left(t_{1}, \ldots, t_{d}\right)$ is the i-th elementary symmetric function evaluated at t_{1}, \ldots, t_{d}. For example, with $d=2$, this identity simply reads:

$$
\lambda_{1} t_{1}^{n+2}+\lambda_{2} t_{2}^{n+2}=\left(t_{1}+t_{2}\right)\left(\lambda_{1} t_{1}^{n+1}+\lambda_{2} t_{2}^{n+1}\right)-\left(t_{1} t_{2}\right)\left(\lambda_{1} t_{1}^{n}+\lambda_{2} t_{2}^{n}\right)
$$

From this identity and the assumptions, it follows easily that a_{n} is integral for all $n \geq 0$.

Remark 1.1. We note that one could also "fix" the statement by stating instead:
Prove that if $\sum_{k=1}^{d} \lambda_{k} t_{k}^{j}$ is an integer for $1 \leq j \leq d$, then also $\sum_{k=1}^{d} \lambda_{k} t_{k}^{d+1}$ is an integer.

The recurrence above would also work in this case.

Department of Mathematics, University of California, Berkeley, CA 94720
E-mail address: chillar@math.berkeley.edu

