AMM11096: THE DETERMINANT AS A POLYNOMIAL IN THE TRACES OF POWERS

CHRISTOPHER J. HILLAR

Abstract

Proposed by Said Amghibech. Show that for each positive integer n there exists a polynomial P_{n} in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ such that, for every n -by- n matrix A over \mathbb{C}, $\operatorname{det} A=P_{n}\left[\operatorname{Tr} A, \operatorname{Tr} A^{2}, \ldots, \operatorname{Tr} A^{n}\right]$.

1. SOLUTION

The question may be restated without reference to matrices as follows. Let $R=$ $\mathbb{Q}\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ be the polynomial ring in algebraically independent indeterminates $\alpha_{1}, \ldots, \alpha_{n}$. Let s_{m} denote the m-th power sum $\sum_{i=1}^{n} \alpha_{i}^{m}$. Then, the problem is asking for a polynomial $h\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
\prod_{i=1}^{n} \alpha_{i}=h\left(s_{1}, \ldots, s_{n}\right)
$$

However, this trivially follows from the (well-known) fact that power sums generate the ring of symmetric functions over \mathbb{Q} (a typical proof uses Newton's identities).

Department of Mathematics, University of California, Berkeley, CA 94720
E-mail address: chillar@math.berkeley.edu

