AUGUST-SEPTEMBER 2004 MATHEMATICAL MONTHLY PROBLEM

CHRISTOPHER J. HILLAR AND DARREN L. RHEA

$$
\begin{aligned}
& \text { Abstract. [11098]. Proposed by Christopher Hillar and Darren Rhea. Let } \\
& \qquad f(n)=\sum_{i=1}^{n} \frac{(-1)^{i+1}}{2^{i}-1}\binom{n}{i}
\end{aligned}
$$

Prove that $f(n)=\Theta(\ln n)$.

1. SOLUTION

Proof. Without changing the result, we may prove that $f(n)=\Theta\left(\log _{2} n\right)$. Examine first a related sum,

$$
g(n)=-\sum_{i=1}^{n} \frac{(-2)^{i}}{2^{i}-1}\binom{n}{i}
$$

Notice that

$$
\begin{align*}
-g(n)+f(n) & =\sum_{i=1}^{n}(-1)^{i}\left(\frac{2^{i}}{2^{i}-1}-\frac{1}{2^{i}-1}\right)\binom{n}{i} \\
& =\sum_{i=1}^{n}(-1)^{i}\binom{n}{i} \tag{1.1}\\
& =(1-1)^{n}-1
\end{align*}
$$

Thus, $f(n)=g(n)-1$. It therefore suffices to prove that $g(n)=\Theta\left(\log _{2} n\right)$. A manipulation of the sum for $g(n)$ gives,

$$
\begin{align*}
g(n) & =-\sum_{i=1}^{n} \frac{(-1)^{i}}{1-2^{-i}}\binom{n}{i} \\
& =-\sum_{i=1}^{n}(-1)^{i}\binom{n}{i} \sum_{j=0}^{\infty} 2^{-i j} \\
& =-\sum_{j=0}^{\infty} \sum_{i=1}^{n}\left(-2^{-j}\right)^{i}\binom{n}{i} \tag{1.2}\\
& =\sum_{j=0}^{\infty} 1-\left(1-2^{-j}\right)^{n} .
\end{align*}
$$

We will first prove the correct upper bound for $g(n)$ using this last expression. Breaking up the sum, we have

$$
\sum_{j=0}^{\infty} 1-\left(1-2^{-j}\right)^{n}=\sum_{j=0}^{\left\lfloor\log _{2} n\right\rfloor-1} 1-\left(1-2^{-j}\right)^{n}+\sum_{j=\left\lfloor\log _{2} n\right\rfloor}^{\infty} 1-\left(1-2^{-j}\right)^{n}
$$

We estimate the right-most summand. From the monotonicity of a standard limit for $1 / e$, we have $\left(1-2^{-j}\right)^{2^{j} \cdot n / 2^{j}} \geq\left(1-2^{-k}\right)^{2^{k} \cdot n / 2^{j}}$ for $j \geq k$ and thus (taking $k=1$),

$$
\begin{equation*}
\sum_{j=\left\lfloor\log _{2} n\right\rfloor}^{\infty} 1-\left(1-2^{-j}\right)^{n} \leq \sum_{j=\left\lfloor\log _{2} n\right\rfloor}^{\infty} 1-(1 / 4)^{n / 2^{j}} \tag{1.3}
\end{equation*}
$$

Also, since $e^{-x} \geq 1-x$ for $x \geq 0$, it follows that

$$
\begin{align*}
\sum_{j=\left\lfloor\log _{2} n\right\rfloor}^{\infty} 1-(1 / 4)^{n / 2^{j}} & \leq(\ln 4) \sum_{j=\left\lfloor\log _{2} n\right\rfloor}^{\infty} n / 2^{j} \\
& \leq(\ln 4) \frac{n}{2^{\left\lfloor\log _{2} n\right\rfloor-1}} \tag{1.4}\\
& \leq 4 \ln 4
\end{align*}
$$

Next, since each of the $\left\lfloor\log _{2} n\right\rfloor$ terms in the first sum are bounded by 1, it follows that $g(n) \leq \log _{2} n+4 \ln 4$. It remains to prove the correct lower bound. This is somewhat easier, as the following computation illustrates:

$$
\begin{align*}
\sum_{j=0}^{\infty} 1-\left(1-2^{-j}\right)^{n} & \geq \sum_{j=0}^{\left\lfloor\log _{2} n\right\rfloor} 1-\left(1-2^{-j}\right)^{n} \\
& \geq \sum_{j=0}^{\left\lfloor\log _{2} n\right\rfloor} 1-e^{-n / 2^{j}} \tag{1.5}\\
& \geq\left(\left\lfloor\log _{2} n\right\rfloor+1\right)\left(1-e^{-n / 2^{\left\lfloor\log _{2} n\right\rfloor}}\right) \\
& \geq\left(\log _{2} n\right)\left(1-e^{-1}\right)
\end{align*}
$$

This completes the proof.

Department of Mathematics, University of California, Berkeley, CA 94720
E-mail address: chillar@math.berkeley.edu
Department of Mathematics, University of California, Berkeley, CA 94720
E-mail address: drhea@math.berkeley.edu

