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Prove that f(n) = Θ(ln n).

1. solution

Proof. Without changing the result, we may prove that f(n) = Θ(log2 n). Examine
first a related sum,
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Thus, f(n) = g(n) − 1. It therefore suffices to prove that g(n) = Θ(log2 n). A
manipulation of the sum for g(n) gives,
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We will first prove the correct upper bound for g(n) using this last expression.
Breaking up the sum, we have
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We estimate the right-most summand. From the monotonicity of a standard limit

for 1/e, we have
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Also, since e−x ≥ 1− x for x ≥ 0, it follows that
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Next, since each of the blog2 nc terms in the first sum are bounded by 1, it follows
that g(n) ≤ log2 n + 4 ln 4. It remains to prove the correct lower bound. This is
somewhat easier, as the following computation illustrates:
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This completes the proof. �
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