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ABSTRACT. [11098]. Proposed by Christopher Hillar and Darren Rhea. Let
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Prove that f(n) = ©(lnn).

1. SOLUTION

Proof. Without changing the result, we may prove that f(n) = ©(log, n). Examine
first a related sum,
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Notice that

Thus, f(n) = g(n) — 1. It therefore suffices to prove that g(n) = ©(logyn). A
manipulation of the sum for g(n) gives,
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We will first prove the correct upper bound for g(n) using this last expression.
Breaking up the sum, we have
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We estimate the right-most summand. From the monotonicity of a standard limit
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for 1/e, we have (1 -2 J) > (1 -2 ) for j > k and thus (taking
k=1),
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Also, since e™* > 1 — x for x > 0, it follows that
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Next, since each of the |logy n] terms in the first sum are bounded by 1, it follows
that g(n) < logyn + 41n4. Tt remains to prove the correct lower bound. This is
somewhat easier, as the following computation illustrates:

[logz n]

di-(-27)r> Y 1-(a-27)"
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[logg n]
(1.5) > Z 176771/23
j=0
> ([logyn) +1)(1 — /2™
> (logyn)(1 —e™).
This completes the proof. (I
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