FEBRUARY 2006 AMERICAN MATHEMATICAL MONTHLY PROBLEM

11204. Proposed by Christopher Hillar, Texas A& M University, College Station, TX. For integers m and j with $m \ge j \ge 0$, and square matrices X and Y of the same size, let $H_{m,j}(X, Y)$ denote the sum of all products of the form $A_1 \cdots A_m$ such that each A_i is either X or Y, and is Y in exactly j cases (by convention, we set $H_{0,0}$ to be the identity matrix). Let tr(A) denote the trace of A. Prove that for all (m, j) with $m > j \ge 0$ there exists a constant c(m, j) such that for all complex square matrices X and Y of the same size,

$$\operatorname{tr}[H_{m,j}(X,Y)] = c(m,j)\operatorname{tr}[XH_{m-1,j}].$$