AMM11226: EQUATION WITH EXACTLY 3 ZEROES IN [0,1]

CHRISTOPHER J. HILLAR

$$
\begin{aligned}
& \text { Abstract. [11226] Proposed by F. Beaucoup and T. Erdelyi. Let } a_{1}, \ldots, a_{n} \\
& \text { be real numbers, each greater than } 1 \text {. If } n \geq 2 \text {, show that there is exactly one } \\
& \text { solution in the interval }(0,1) \text { to } \\
& \qquad \prod_{j=1}^{n}\left(1-x^{a_{j}}\right)=1-x
\end{aligned}
$$

1. SOLUTION

We begin with a few straightforward lemmas.
Lemma 1.1. If $a>1$, then for $x \in[0,1)$, we have

$$
\frac{1-x}{1-x^{a}} \geq \frac{1}{a}
$$

Proof. Elementary calculus shows that the minimum of $h(x)=(a-a x)-\left(1-x^{a}\right)$ over $[0,1]$ is $0=h(1)$.

Lemma 1.2. Let $f(x)$ be a differentiable function on $[0,1]$ such that $f(0)=f(1)=$ 0 and $f^{\prime}\left(x_{0}\right)<0$ for every $x_{0} \in(0,1)$ such that $f\left(x_{0}\right)=0$. Then $f(x)$ has at most one zero in $(0,1)$.

Proof. Suppose that there are two zeroes $a<b$ of f in $(0,1)$; we will derive a contradiction. Let C be the (closed) set of zeroes of f in $[0,1]$. By the hypotheses, f is not the zero function on $[a, b]$; therefore, let $y \in(a, b)$ be in the (open) complement of C. Consider the set of intervals $[c, y)$ with c a zero of f and choose the one with $c<y$ maximal. Similarly, choose d a zero of f minimal with $y<d$. Since $f^{\prime}(c)<0$, we must have that $f(x)<0$ for all $x \in(c, d)$ (intermediate value theorem). Thus,

$$
f^{\prime}(d)=\lim _{h \rightarrow 0} \frac{f(d)-f(d-h)}{h}=\lim _{h \rightarrow 0} \frac{-f(d-h)}{h} \geq 0
$$

a contradiction. This proves the lemma.
Lemma 1.3. Let $f(x)$ be a differentiable function on $[0,1]$ such that $f(0)=f(1)=$ 0 and $f^{\prime}(0), f^{\prime}(1)>0$. Then $f\left(x_{0}\right)=0$ for some $x_{0} \in(0,1)$.

Proof. From the hypotheses, f is positive near 0 and negative near 1. Now apply the intermediate value theorem.

We may now give a solution to the problem. Consider the differentiable function on $[0,1]$ given by $g(x)=\prod_{j=1}^{n}\left(1-x^{a_{j}}\right)$, and set $f(x)=g(x)-(1-x)$. We will first
prove that if $x_{0} \in(0,1)$ is a solution to $f(x)=0$, then $f^{\prime}\left(x_{0}\right)<0$. It will follow from the lemma above that f has at most 1 zero in (0,1). A computation gives:

$$
f^{\prime}(x)=1-\sum_{j=1}^{n} \frac{g(x)}{1-x^{a_{j}}} a_{j} x^{a_{j}-1} .
$$

Suppose that $x_{0} \in(0,1)$ is such that $f\left(x_{0}\right)=0$. Then,

$$
\begin{aligned}
f^{\prime}\left(x_{0}\right) & =1-\sum_{j=1}^{n} \frac{1-x_{0}}{1-x_{0}^{a_{j}}}\left(a_{j} x_{0}^{a_{j}-1}\right) \\
& \leq 1-\sum_{j=1}^{n} \frac{1}{a_{j}}\left(a_{j} x_{0}^{a_{j}-1}\right) \\
& =1-\sum_{j=1}^{n} x_{0}^{a_{j}-1} .
\end{aligned}
$$

From the Weierstrass product inequality, we have that

$$
1-x_{0}=g\left(x_{0}\right)=\prod_{j=1}^{n}\left(1-x_{0}^{a_{j}}\right) \geq 1-\sum_{j=1}^{n} x_{0}^{a_{j}}
$$

equality holding only when $x_{0}=0$ or $x_{0}=1$. Rearranging this expression, it therefore follows that $f^{\prime}\left(x_{0}\right)<0$ as desired.

Finally, that there is a zero for f in $(0,1)$ follows from the lemma above since $n \geq 2$ implies that that $f^{\prime}(0)=f^{\prime}(1)=1>0$.

Department of Mathematics, Texas A\&M University, College Station, TX 77843
E-mail address: chillar@math.tamu.edu

