AMM11226: EQUATION WITH EXACTLY 3 ZEROES IN [0,1]

CHRISTOPHER J. HILLAR

ABSTRACT. [11226] Proposed by F. Beaucoup and T. Erdelyi. Let a_1, \ldots, a_n be real numbers, each greater than 1. If $n \geq 2$, show that there is exactly one solution in the interval (0,1) to

$$\prod_{j=1}^{n} (1 - x^{a_j}) = 1 - x.$$

1. SOLUTION

We begin with a few straightforward lemmas.

Lemma 1.1. If a > 1, then for $x \in [0,1)$, we have

$$\frac{1-x}{1-x^a} \ge \frac{1}{a}.$$

Proof. Elementary calculus shows that the minimum of $h(x) = (a - ax) - (1 - x^a)$ over [0, 1] is 0 = h(1).

Lemma 1.2. Let f(x) be a differentiable function on [0, 1] such that f(0) = f(1) = 0 and $f'(x_0) < 0$ for every $x_0 \in (0, 1)$ such that $f(x_0) = 0$. Then f(x) has at most one zero in (0, 1).

Proof. Suppose that there are two zeroes a < b of f in (0,1); we will derive a contradiction. Let C be the (closed) set of zeroes of f in [0,1]. By the hypotheses, f is not the zero function on [a, b]; therefore, let $y \in (a, b)$ be in the (open) complement of C. Consider the set of intervals [c, y) with c a zero of f and choose the one with c < y maximal. Similarly, choose d a zero of f minimal with y < d. Since f'(c) < 0, we must have that f(x) < 0 for all $x \in (c, d)$ (intermediate value theorem). Thus,

$$f'(d) = \lim_{h \to 0} \frac{f(d) - f(d-h)}{h} = \lim_{h \to 0} \frac{-f(d-h)}{h} \ge 0,$$

a contradiction. This proves the lemma.

Lemma 1.3. Let f(x) be a differentiable function on [0,1] such that f(0) = f(1) = 0 and f'(0), f'(1) > 0. Then $f(x_0) = 0$ for some $x_0 \in (0,1)$.

Proof. From the hypotheses, f is positive near 0 and negative near 1. Now apply the intermediate value theorem.

We may now give a solution to the problem. Consider the differentiable function on [0, 1] given by $g(x) = \prod_{j=1}^{n} (1 - x^{a_j})$, and set f(x) = g(x) - (1 - x). We will first

prove that if $x_0 \in (0, 1)$ is a solution to f(x) = 0, then $f'(x_0) < 0$. It will follow from the lemma above that f has at most 1 zero in (0, 1). A computation gives:

$$f'(x) = 1 - \sum_{j=1}^{n} \frac{g(x)}{1 - x^{a_j}} a_j x^{a_j - 1}.$$

Suppose that $x_0 \in (0, 1)$ is such that $f(x_0) = 0$. Then,

$$f'(x_0) = 1 - \sum_{j=1}^n \frac{1 - x_0}{1 - x_0^{a_j}} (a_j x_0^{a_j - 1})$$

$$\leq 1 - \sum_{j=1}^n \frac{1}{a_j} (a_j x_0^{a_j - 1})$$

$$= 1 - \sum_{j=1}^n x_0^{a_j - 1}.$$

From the Weierstrass product inequality, we have that

$$1 - x_0 = g(x_0) = \prod_{j=1}^n (1 - x_0^{a_j}) \ge 1 - \sum_{j=1}^n x_0^{a_j},$$

equality holding only when $x_0 = 0$ or $x_0 = 1$. Rearranging this expression, it therefore follows that $f'(x_0) < 0$ as desired.

Finally, that there is a zero for f in (0,1) follows from the lemma above since $n \ge 2$ implies that that f'(0) = f'(1) = 1 > 0.

Department of Mathematics, Texas A&M University, College Station, TX 77843 $E\text{-}mail\ address:\ \texttt{chillar@math.tamu.edu}$