11231. Proposed by Christopher Hillar, Texas Aध M University, College Station, $T X$. Find a non-Abelian group $G$ with the following property: for each $n$, every word $W$ on the alphabet of $n+1$ letters $A_{1}, \ldots, A_{n}$, and $X$, all lists $a_{1}, \ldots, a_{n}$ of elements of $G$, and every $b$ in $G$ there exists a unique $x$ in $G$ such that $W\left(a_{1}, \ldots, a_{n}, x\right)=b$. (Thus, in particular, $a x^{2} a x=b$ must have a unique solution $x$.)
