# KKT OPTIMALITY CONDITIONS

### CHRISTOPHER J. HILLAR

# 1. Complementary Slackness

Recall the primal and dual problems:

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \leq 0$   
 $h_i(x) = 0$ ,  
maximize  $g(\lambda, \nu)$ 

where

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x),$$

subject to  $\lambda \geq 0$ ,

and

$$g(\lambda, \nu) := \inf_{x \in \mathcal{D}} L(x, \lambda, \nu).$$

We assume now that the primal and dual optimality values are attained and equal (so that strong duality holds). Let  $x^*$  be a primal optimal and  $(\lambda^*, \nu^*)$  be a dual optimal point. We have:

$$f_{0}(x^{*}) = g(\lambda^{*}, \nu^{*})$$

$$= \min_{x \in \mathcal{D}} L(x, \lambda^{*}, \nu^{*})$$

$$\leq L(x^{*}, \lambda^{*}, \nu^{*})$$

$$= f_{0}(x^{*}) + \sum_{i} \lambda^{*} f_{i}(x^{*}) + \sum_{i} v_{i}^{*} h_{i}(x^{*})$$

$$\leq f_{0}(x^{*}).$$

Thus, all the inequalities are actually equalities. In particular,

(1.2) 
$$L(x^*, \lambda^*, \nu^*) = \min_{x \in \mathcal{D}} L(x, \lambda^*, \nu^*).$$

But more importantly, complementary slackness holds:

$$\sum \lambda_i^* f_i(x^*) = 0 \implies \lambda_i^* f_i(x^*) = 0, \quad i = 1, \dots, m.$$

An interesting interpretation of all this is that  $(x^*, \lambda^*, \nu^*)$  is a saddle point for the Lagrangian  $L(x, \lambda, \nu)$  (for  $\lambda \geq 0$ ):

(1.3) 
$$L(x^*, \lambda^*, \nu^*) = f_0(x^*) + \sum_i \lambda_i^* f_i(x^*) + \sum_i \nu_i^* h_i(x^*)$$
$$\geq f_0(x^*) + \sum_i \lambda_i f_i(x^*) + \sum_i \nu_i h_i(x^*)$$
$$= L(x^*, \lambda, \nu).$$

while  $L(x^*, \lambda^*, \nu^*) \le L(x, \lambda^*, \nu^*)$  by (1.2).

# 2. KKT

We now assume additionally that  $f_i$  and  $h_i$  are differentiable (but general otherwise). By (1.2),  $x^*$  minimizes  $L(x, \lambda^*, \nu^*)$  over x. Thus, its gradient must vanish at  $x^*$ :

$$\nabla f_0(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) + \sum_i \nu_i^* \nabla h_i(x^*) = 0.$$

Thus, we have:

(2.1) 
$$f_i(x^*) \leq 0$$

$$h_i(x^*) = 0$$

$$\lambda_i^* \geq 0$$

$$\lambda_i^* f_i(x^*) = 0$$

$$\nabla f_0(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) + \sum_i \nu_i^* \nabla h_i(x^*) = 0.$$

This system is called the Karush-Kuhn-Tucker (KKT) conditions.

### REFERENCES

[1] S. Boyd, L. Vandenberghe, Convex Optimization.