Christopher Hillar
General Quadratic Gauss Sums (Dirichler)

Let a, b be non-zero integers, b > 0, and (a,b) = 1. Now, let
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Where X, is a b™ root of unity. This type of sum is called a Quadratic Gauss Sum. We intend to evaluate
this sum explicitly. As an example, with a=1 and b = 3, we have:

G(1,3) = x," +x;' +x;'

- 1+4-3

But since X;, = ————, we have that
G(1,3) = V- 3

Although we have seen in class such objects, a general theorem exists stating exactly what these G(a,b)
are...and not just what happens when you square them.

Reduction to Gauss Sum in class:

In the proof of quadratic reciprocity, given an odd prime p, we needed to know the square value of the
following sum:

8(p) = amodpgp

It turns out that the general quadratic gauss sums and the one above are very related. In fact, g(p) = G(1,p).
Proof:

Let r denote the non-zero quadratic residues, and let n denote the non-zero non-quadratic residues.
Notice that the map x ® x* covers the quadratic residues twice. Hence,
(1) o X2 _ o) p
ax, =1+2gx,
xmod p r

But also, we obviously have:

(2) 0 = axy—1+ax +ax

ymod p

Combining these two relations finally gives us what we want,

o 2 _ 9 ” o n
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In order to prove the general theorem, we must do some algebraic reductions to reduce the problem to that
of computing G(1,b).

a1 0
Step 1: If p is an odd prime, G(a,p) = g— =G(L,p).
Pg

Proof:
Ifa® ¢* (mod p) for some c, then we notice that ax* © (cx)* (mod p). But it is easy to see that as x
ranges over the set {0, 1, 2, ..., p-1}, so will cx. Hence, in this case, G(a,p) = G(1,p).

In the second case, a * square mod p, we must show that G(a,p) = -G(1,p). We first notice that if
a is not a square, ax” will also not be a square mod p. This is obvious from the fact that
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Thus, the set of numbers {ax’} = a{x’} where x ranges over {0, 1,2, ..., p-1} will cover the non-quadratic
residues twice. Hence,

o] ax?  _ o n
ax, =1+2gx,
n

x mod p

Where n denotes the non-residues. Combining this with (2) and (3), gives us that

o ax? o r o] n o} x?
ax, =-ax,tax, =- ax, =-G61Lp)

x mod p x mod p

The following steps of reduction fall along the same lines as above, and for sake of time, we omit them.

Step 2: Let p be an odd prime, and r an integer > 2, then G(a,p") = pG(a,p™).
Step 3: Letb,c >0, (b,c) =1, and (a,bc) = 1. Then G(a,bc) = G(ab,c)>G(ac,b).
a1 0
Step 4: Let b be odd, b> 0. Then G(a,b) = g—=G(L,b).
Po
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Step 5: Let a be odd. Then G(a,2") = g =G(1,2) a® 1 (mod4)
a g
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Hence, the value of G(a,b) is completely determined if we can somehow calculate G(1,b). We now do this

(From Dirichlet).

Theorem: Gub = [ /b b 0 (mod 4)
Jb bO 1 (mod 4)
9 0 b° 2 (mod 4)
ib b° 3 (mod 4)
\

We first need a fact from Fourier analysis.

If q is a function which is smooth except for ordinary discontinuities, then the Fourier series converges
pointwise to the midpoint of the discontinuity. In particular, if q is continuously differentiable on the

interval [0,1], then

m
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Where c,, is the m" Fourier coefficient,

| A 0 1

¢, = QUG e dx
We shall use the function, f(x) = eIt
Letting fi(x) = f(x+tk) {k=0, 1, 2, ..., b-1}, then by definition we have,

o 5 1,0+ £,()

[¢} [¢} [¢}
Gy = ae’ = a f=a-"—F"—
x mod b x mod b k=0 2

Hence, if g=f, + f; + £, + ... + f;,_;, by the above theorem, we need only compute the sum of the Fourier

coefficients of q to get the value of G(1,b).

So we have:
Bl
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G(1,b)
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To get this equality above, we need to prove that

b1 4 b 4 4
é ()fk(x)e'z‘”mxdx = Q Q2P o 2P 1
k=0

Induction works here. For b =1, it is true, and for n+1, we have that

& 1 o n 2 . 1 ) s o
a ka(x)e 2D1mdx - Q ezptx /be 2p1mdx + Qesz(x+n) /be zp,mdx
k=0

Making the change of variables, v = x+n, we get that
\1 . 2 _ . \n+1 . 2 _ .
Q eZpt(x+n) /b e 2ptmdx - Q eZpt(v) /b e 2p1mvdv

-2pim(v- n) - e»2pimv62pimn , but eZpimn

As desired (because e =1). Hence, the result is true for all n,

namely, it is true for n = b-1.

So our computation amounts to finding

é d’ eZpi(xz—bmx)/bdx
ml Z

Completing the square in the above expression gives us that

So our sum is just

_ é o Pibm’ 12 d’eZpi(x»bm/Z)Z/bdx
ml Z
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=1, and if m is odd, we have that e The first is due to the fact

o P12 (e—pib)’”z/z - ((_ l)b)mz/z -1

If m is even, then e
that

And if m is odd, we get that

o P12 (epi/z)'bmzz (24)-bm2 _ (l.)—bm2 _—

This last equality is due to the fact that m odd implies m* © 1 (mod 4).

So we split up the sum into two parts corresponding to odd and even m. Set m = 2r, and examine the sum:
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Letting u = x — br, we get
2 N 2piu’ /b
e du
a Obr
f
Notice that this sum is just a way of breaking up the integral
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Performing the same trivial calculation for m = 2r+1, gives us the same result. Hence, we must have that
\¥ [uz .-
G(Lb) = (1+7")g, ™ du= (1+i)1,

Provided, of course, that the indefinite integral, I, above exists. We do this by examining the tail ends of
Ip. Letting 0 <A <B, wesett= u?, dt = 2udu, to get that

N _ 3B o dt
e du = e —
Q Q: 24t

An integration by parts gives us that the integral above is just

2 2sz /b 2piA% /b
B gpiy dt b € e
e [ —_—
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Which in absolute value is less than or equal to
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Since,
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we notice that as you take B to infinity, and then A to infinity, these tail ends approach 0

u du
Finally, we know that I,, exists, but we must still compute it. If we let £ = T dt = T we get

(‘)¥¥ it Iy = \/—Q ePar = bl
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Where we can find I from the relation, G(1,1) =1 = (l +i 1) (\) e gy = (1 +i 1)1 .
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Hence,

1+

GLb) = 1+, = 1+i>1\/5

Which takes on the values { (1+i) \/Z , \/Z ,0, i\/z } whenb© {0,1,2,3} respectively (mod 4).

Therefore, we have determined the exact value of the quadratic gauss sum.



