General Quadratic Gauss Sums (Dirichlet)

Let a, b be non-zero integers, $\mathrm{b}>0$, and $(\mathrm{a}, \mathrm{b})=1$. Now, let

$$
G(a, b)=\sum_{x \bmod b} \xi_{b}^{a x^{2}}=\sum_{x \bmod b} e^{\frac{2 \pi i}{b} a x^{2}}
$$

Where ξ_{b} is a $\mathrm{b}^{\text {th }}$ root of unity. This type of sum is called a Quadratic Gauss Sum. We intend to evaluate this sum explicitly. As an example, with $a=1$ and $b=3$, we have:

$$
G(1,3)=\xi_{3}{ }^{0}+\xi_{3}{ }^{1}+\xi_{3}{ }^{1}
$$

But since $\xi_{3}=\frac{-1+\sqrt{-3}}{2}$, we have that

$$
G(1,3)=\sqrt{-3}
$$

Although we have seen in class such objects, a general theorem exists stating exactly what these $G(a, b)$ are... and not just what happens when you square them.

Reduction to Gauss Sum in class:

In the proof of quadratic reciprocity, given an odd prime p, we needed to know the square value of the following sum:

$$
g(p)=\sum_{a \bmod p}\left(\frac{a}{p}\right) \cdot \xi_{p}^{a}
$$

It turns out that the general quadratic gauss sums and the one above are very related. In fact, $g(p)=G(1, p)$.
Proof:
Let r denote the non-zero quadratic residues, and let n denote the non-zero non-quadratic residues. Notice that the map $x \rightarrow x^{2}$ covers the quadratic residues twice. Hence,

$$
\begin{equation*}
\sum_{x \bmod p} \xi_{p}^{x^{2}}=1+2 \sum_{r} \xi_{p}^{r} \tag{1}
\end{equation*}
$$

But also, we obviously have:

$$
\begin{equation*}
0=\sum_{y \bmod p} \xi_{p}^{y}=1+\sum_{r} \xi_{p}^{r}+\sum_{n} \xi_{p}^{n} \tag{2}
\end{equation*}
$$

Combining these two relations finally gives us what we want,

$$
\begin{equation*}
\sum_{x \bmod p} \xi_{p}^{x^{2}}=\sum_{r} \xi_{p}{ }^{r}-\sum_{n} \xi_{p}{ }^{n}=\sum_{a \bmod p}\left(\frac{a}{p}\right) \cdot \xi_{p}{ }^{a} \tag{3}
\end{equation*}
$$

In order to prove the general theorem, we must do some algebraic reductions to reduce the problem to that of computing $G(1, b)$.

Step 1: If p is an odd prime, $\mathrm{G}(\mathrm{a}, \mathrm{p})=\left(\frac{a}{p}\right) \mathrm{G}(1, \mathrm{p})$.
Proof:
If $\mathrm{a} \equiv \mathrm{c}^{2}(\bmod \mathrm{p})$ for some c , then we notice that $\mathrm{ax}{ }^{2} \equiv(\mathrm{cx})^{2}(\bmod p)$. But it is easy to see that as x ranges over the set $\{0,1,2, \ldots, p-1\}$, so will cx. Hence, in this case, $G(a, p)=G(1, p)$.

In the second case, $a \neq$ square mod p, we must show that $G(a, p)=-G(1, p)$. We first notice that if a is not a square, ax^{2} will also not be a square $\bmod \mathrm{p}$. This is obvious from the fact that

$$
-1=\left(\frac{a}{p}\right)\left(\frac{x^{2}}{p}\right)=\left(\frac{a x^{2}}{p}\right)
$$

Thus, the set of numbers $\left\{\mathrm{ax}^{2}\right\}=\mathrm{a}\left\{\mathrm{x}^{2}\right\}$ where x ranges over $\{0,1,2, \ldots, \mathrm{p}-1\}$ will cover the non-quadratic residues twice. Hence,

$$
\sum_{x \bmod p} \xi_{p}{ }^{a x^{2}}=1+2 \sum_{n} \xi_{p}{ }^{n}
$$

Where n denotes the non-residues. Combining this with (2) and (3), gives us that

$$
\sum_{x \bmod p} \xi_{p}{ }^{a x^{2}}=-\sum_{r} \xi_{p}{ }^{r}+\sum_{n} \xi_{p}{ }^{n}=-\sum_{x \bmod p} \xi_{p}^{x^{2}}=-G(1, p)
$$

The following steps of reduction fall along the same lines as above, and for sake of time, we omit them.

Step 2: Let p be an odd prime, and r an integer ≥ 2, then $G\left(a, p^{r}\right)=p G\left(a, p^{r-2}\right)$.

Step 3: \quad Let $b, c>0,(b, c)=1$, and $(a, b c)=1$. Then $G(a, b c)=G(a b, c) \cdot G(a c, b)$.
Step 4: \quad Let b be odd, $\mathrm{b}>0$. Then $\mathrm{G}(\mathrm{a}, \mathrm{b})=\left(\frac{a}{p}\right) \mathrm{G}(1, \mathrm{~b})$.

Step 5:

$$
\text { Let a be odd. Then } \mathrm{G}\left(\mathrm{a}, 2^{\mathrm{r}}\right)= \begin{cases}\left(\frac{-2^{r}}{a}\right) \mathrm{G}\left(1,2^{\mathrm{r}}\right) & \mathrm{a} \equiv 1(\bmod 4) \\ \left(\frac{-2^{r}}{a}\right) i \mathrm{G}\left(1,2^{\mathrm{r}}\right) & \mathrm{a} \equiv 3(\bmod 4)\end{cases}
$$

Hence, the value of $G(a, b)$ is completely determined if we can somehow calculate $G(1, b)$. We now do this. (From Dirichlet).

Theorem: $\mathrm{G}(1, \mathrm{~b})=\left\{\begin{array}{cl}(1+i) \sqrt{b} & \mathrm{~b} \equiv 0(\bmod 4) \\ \sqrt{b} & \mathrm{~b} \equiv 1(\bmod 4) \\ 0 & \mathrm{~b} \equiv 2(\bmod 4) \\ i \sqrt{b} & \mathrm{~b} \equiv 3(\bmod 4)\end{array}\right.$

We first need a fact from Fourier analysis.
If θ is a function which is smooth except for ordinary discontinuities, then the Fourier series converges pointwise to the midpoint of the discontinuity. In particular, if θ is continuously differentiable on the interval [0,1], then

$$
\frac{\theta(0)+\theta(1)}{2}=\sum_{m \in \mathrm{Z}} c_{m}
$$

Where c_{m} is the $m^{\text {th }}$ Fourier coefficient,

$$
c_{m}=\int_{0}^{1} \theta(x) e^{-2 \pi i m x} d x
$$

We shall use the function, $\mathrm{f}(\mathrm{x})=e^{2 \pi i x^{2} / b}$.
Letting $\mathrm{f}_{\mathrm{k}}(\mathrm{x})=\mathrm{f}(\mathrm{x}+\mathrm{k}) \quad\{\mathrm{k}=0,1,2, \ldots, \mathrm{~b}-1\}$, then by definition we have,

$$
G(1, b)=\sum_{x \bmod b} e^{\frac{2 \pi i}{b} x^{2}}=\sum_{x \bmod b} f(x)=\sum_{k=0}^{b-1} \frac{f_{k}(0)+f_{k}(1)}{2}
$$

Hence, if $\theta=f_{0}+f_{1}+f_{2}+\ldots+f_{b-1}$, by the above theorem, we need only compute the sum of the Fourier coefficients of θ to get the value of $\mathrm{G}(1, \mathrm{~b})$.

So we have:

$$
\begin{aligned}
G(1, b) & =\sum_{m \in \mathrm{Z}} \sum_{k=0}^{b-1} \int_{0}^{1} f_{k}(x) e^{-2 \pi i m x} d x \\
& =\sum_{m \in \mathrm{Z}} \int_{0}^{b} e^{2 \pi i x^{2} / b} e^{-2 \pi i m x} d x
\end{aligned}
$$

To get this equality above, we need to prove that

$$
\sum_{k=0}^{b-1} \int_{0}^{1} f_{k}(x) e^{-2 \pi i m x} d x=\int_{0}^{b} e^{2 \pi i x^{2} / b} e^{-2 \pi i m x} d x
$$

Induction works here. For $\mathrm{b}=1$, it is true, and for $\mathrm{n}+1$, we have that

$$
\sum_{k=0}^{n} \int_{0}^{1} f_{k}(x) e^{-2 \pi i m x} d x=\int_{0}^{n} e^{2 \pi i x^{2} / b} e^{-2 \pi i m x} d x+\int_{0}^{1} e^{2 \pi i(x+n)^{2} / b} e^{-2 \pi i m x} d x
$$

Making the change of variables, $\mathrm{v}=\mathrm{x}+\mathrm{n}$, we get that

$$
\int_{0}^{1} e^{2 \pi i(x+n)^{2} / b} e^{-2 \pi i m x} d x=\int_{n}^{n+1} e^{2 \pi i(v)^{2} / b} e^{-2 \pi i m v} d v
$$

As desired (because $e^{-2 \pi i m(v-n)}=e^{-2 \pi i m v} e^{2 \pi i m n}$, but $e^{2 \pi i m n}=1$). Hence, the result is true for all n , namely, it is true for $\mathrm{n}=\mathrm{b}-1$.

So our computation amounts to finding

$$
\sum_{m \in \mathrm{Z}} \int_{0}^{b} e^{2 \pi i\left(x^{2}-b m x\right) / b} d x
$$

Completing the square in the above expression gives us that

$$
x^{2}-b m x=\left(x-\frac{b m}{2}\right)^{2}-\frac{b^{2} m^{2}}{4}
$$

So our sum is just

$$
=\sum_{m \in \mathrm{Z}} e^{-\pi i b m^{2} / 2} \int_{0}^{b} e^{2 \pi i(x-b m / 2)^{2} / b} d x
$$

If m is even, then $e^{-\pi i b m^{2} / 2}=1$, and if m is odd, we have that $e^{-\pi i b m^{2} / 2}=i^{-b}$. The first is due to the fact that

$$
e^{-\pi i b m^{2} / 2}=\left(e^{-\pi i b}\right)^{m^{2} / 2}=\left((-1)^{b}\right)^{m^{2} / 2}=1
$$

And if m is odd, we get that

$$
e^{-\pi i b m^{2} / 2}=\left(e^{\pi i / 2}\right)^{-b m^{2}}=\left(\zeta_{4}\right)^{-b m^{2}}=(i)^{-b m^{2}}=i^{-b}
$$

This last equality is due to the fact that m odd implies $m^{2} \equiv 1(\bmod 4)$.
So we split up the sum into two parts corresponding to odd and even m. Set $m=2 r$, and examine the sum:

$$
\sum_{r} \int_{0}^{b} e^{2 \pi i(x-b r)^{2} / b} d x
$$

Letting $\mathrm{u}=\mathrm{x}-\mathrm{br}$, we get

$$
\sum_{r} \int_{-b r}^{b-b r} e^{2 \pi i u^{2} / b} d u
$$

Notice that this sum is just a way of breaking up the integral,

$$
\int_{-\infty}^{\infty} e^{2 \pi i u^{2} / b} d u
$$

Performing the same trivial calculation for $\mathrm{m}=2 \mathrm{r}+1$, gives us the same result. Hence, we must have that

$$
G(1, b)=\left(1+i^{-b}\right) \int_{-\infty}^{\infty} e^{2 \pi i u^{2} / b} d u=\left(1+i^{-b}\right) I_{b}
$$

Provided, of course, that the indefinite integral, I_{b}, above exists. We do this by examining the tail ends of I_{b}. Letting $0<\mathrm{A}<\mathrm{B}$, we set $\mathrm{t}=\mathrm{u}^{2}$, $\mathrm{dt}=2 \mathrm{udu}$, to get that

$$
\int_{A}^{B} e^{2 \pi i u^{2} / b} d u=\int_{A^{2}}^{B^{2}} e^{2 \pi i t / b} \frac{d t}{2 \sqrt{t}}
$$

An integration by parts gives us that the integral above is just

$$
\int_{A^{2}}^{B^{2}} e^{2 \pi i t / b} \frac{d t}{2 \sqrt{t}}=\frac{b}{2 \pi i}\left[\frac{e^{2 \pi i B^{2} / b}}{2 \sqrt{B^{2}}}-\frac{e^{2 \pi i A^{2} / b}}{2 \sqrt{A^{2}}}+\int_{A^{2}}^{B^{2}} e^{2 \pi i t / b} \frac{d t}{4 \sqrt{t^{3}}}\right]
$$

Which in absolute value is less than or equal to

$$
\left|\frac{b}{2 \pi i}\right|\left(\frac{1}{2 B}+\frac{1}{2 A}+\int_{A^{2}}^{B^{2}} \frac{d t}{4 \sqrt{t^{3}}}\right)
$$

Since,

$$
\int_{A^{2}}^{B^{2}} \frac{d t}{4 \sqrt{t^{3}}}=-\frac{1}{2 \sqrt{B^{2}}}+\frac{1}{2 \sqrt{A^{2}}}
$$

we notice that as you take B to infinity, and then A to infinity, these tail ends approach 0 .
Finally, we know that I_{b} exists, but we must still compute it. If we let $t=\frac{u}{\sqrt{b}}, d t=\frac{d u}{\sqrt{b}}$, we get

$$
\int_{-\infty}^{\infty} e^{2 \pi i u^{2} / b} d u=\sqrt{b} \int_{-\infty}^{\infty} e^{2 \pi i t^{2}} d t=\sqrt{b} I
$$

Where we can find I from the relation, $\mathrm{G}(1,1)=1=\left(1+i^{-1}\right) \int_{-\infty}^{\infty} e^{2 \pi i u^{2} / 1} d u=\left(1+i^{-1}\right) I$.
Hence,

$$
G(1, b)=\left(1+i^{-b}\right) I_{b}=\frac{1+i^{-b}}{1+i^{-1}} \sqrt{b}
$$

Which takes on the values $\{(1+i) \sqrt{b}, \sqrt{b}, 0, i \sqrt{b}\}$ when $\mathrm{b} \equiv\{0,1,2,3\}$ respectively ($\bmod 4)$.

Therefore, we have determined the exact value of the quadratic gauss sum.

