
Christopher Hillar 
General Quadratic Gauss Sums (Dirichlet) 

 
 
Let a, b be non-zero integers, b > 0, and (a,b) = 1.  Now, let 
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Where ξb is a bth root of unity.  This type of sum is called a Quadratic Gauss Sum.  We intend to evaluate 
this sum explicitly.  As an example, with a = 1 and b = 3, we have: 
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Although we have seen in class such objects, a general theorem exists stating exactly what these G(a,b) 
are…and not just what happens when you square them.  
 
 
Reduction to Gauss Sum in class: 
 
 
In the proof of quadratic reciprocity, given an odd prime p, we needed to know the square value of the 
following sum: 
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It turns out that the general quadratic gauss sums and the one above are very related.  In fact, g(p) = G(1,p). 
 
Proof: 
 
 Let r denote the non-zero quadratic residues, and let n denote the non-zero non-quadratic residues.  
Notice that the map  x → x2  covers the quadratic residues twice.  Hence, 
 
(1) 
 

But also, we obviously have: 
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Combining these two relations finally gives us what we want, 
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In order to prove the general theorem, we must do some algebraic reductions to reduce the problem to that 
of computing G(1,b). 
 
 

Step 1:  If p is an odd prime, G(a,p) = 
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Proof: 
 If a ≡ c2 (mod p) for some c, then we notice that ax2 ≡ (cx)2 (mod p).  But it is easy to see that as x 
ranges over the set {0, 1, 2, …, p-1}, so will cx.  Hence, in this case, G(a,p) = G(1,p).   
 
 In the second case, a ≠ square mod p, we must show that G(a,p)  =  -G(1,p).  We first notice that if 
a is not a square, ax2 will also not be a square mod p.  This is obvious from the fact that 
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Thus, the set of numbers {ax2} = a{x2} where x ranges over {0, 1, 2, …, p-1} will cover the non-quadratic 
residues twice.  Hence,  
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Where n denotes the non-residues.  Combining this with (2) and (3), gives us that 
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The following steps of reduction fall along the same lines as above, and for sake of time, we omit them. 
 
 
Step 2:   Let p be an odd prime, and r an integer > 2, then G(a,pr) = pG(a,pr-2). 
 
 
Step 3:   Let b,c > 0, (b,c) = 1, and (a,bc) = 1.  Then G(a,bc) = G(ab,c)⋅G(ac,b). 
 

Step 4:   Let b be odd, b > 0.  Then G(a,b) = 
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Step 5:   Let a be odd.  Then G(a,2r) =             
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Hence, the value of G(a,b) is completely determined if we can somehow calculate G(1,b).  We now do this.  
(From Dirichlet). 
 
 
 

Theorem:  G(1,b)  =  (1+i) b  b ≡ 0 (mod 4) 
 

 b  b ≡ 1 (mod 4) 
 
 0 b ≡ 2 (mod 4) 
 

                                                            i b   b ≡ 3 (mod 4) 
 
 
 
 
 
We first need a fact from Fourier analysis.   
 
If  θ  is a function which is smooth except for ordinary discontinuities, then the Fourier series converges 
pointwise to the midpoint of the discontinuity.  In particular, if θ is continuously differentiable on the 
interval [0,1], then  
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Where cm is the mth Fourier coefficient, 
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We shall use the function, f(x) = bixe /2 2π . 
 
Letting fk(x) = f(x+k)  {k = 0, 1, 2, …, b-1}, then by definition we have,  
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Hence, if θ = f0 + f1 + f2 + … + fb-1, by the above theorem, we need only compute the sum of the Fourier 
coefficients of θ to get the value of G(1,b). 
 
So we have: 
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To get this equality above, we need to prove that  
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Induction works here.  For b = 1, it is true, and for n+1, we have that  
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Making the change of variables, v = x+n, we get that 
 

∫∫
+ −−+ =

1 2/)(21

0

2/)(2 22 n

n

imvbviimxbnxi dveedxee ππππ  

 

As desired (because imnimvnvim eee πππ 22)(2 −−− = , but 12 =imne π ).   Hence, the result is true for all n, 
namely, it is true for n = b-1. 
 
So our computation amounts to finding 
 
 
 
 
Completing the square in the above expression gives us that 
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So our sum is just 
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If m is even, then  2/2ibme π−  = 1, and if m is odd, we have that 2/2ibme π−  = i-b.   The first is due to the fact 
that   
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And if m is odd, we get that  
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This last equality is due to the fact that m odd implies m2 ≡ 1 (mod 4). 
 
So we split up the sum into two parts corresponding to odd and even m.  Set m = 2r, and examine the sum: 
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Letting u = x – br, we get 
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Notice that this sum is just a way of breaking up the integral, 
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Performing the same trivial calculation for m = 2r+1, gives us the same result.  Hence, we must have that 
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Provided, of course, that the indefinite integral, Ib, above exists.  We do this by examining the tail ends of 
Ib.  Letting 0 < A < B, we set t = u2, dt = 2udu, to get that 
 
 

∫∫ =
2

2

2

2
/2/2 B

A

btiB

A

bui

t
dt

edue ππ     

 
An integration by parts gives us that the integral above is just 
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Which in absolute value is less than or equal to 
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Since, 
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we notice that as you take B to infinity, and then A to infinity, these tail ends approach 0. 
 

Finally, we know that Ib exists, but we must still compute it.  If we let 
b

du
dt

b
u

t == , , we get 

 

Ibdtebdue tibui ∫∫
∞

∞−

∞

∞−
==

22 2/2 ππ   



 6

 

Where we can find I from the relation, G(1,1) = 1 = ( ) ( )Iiduei ui 11/21 11
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Which takes on the values  { (1+i) b , b , 0,  i b  }   when b ≡ {0,1,2,3}  respectively (mod 4). 
 
 
Therefore, we have determined the exact value of the quadratic gauss sum. 
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