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Abstract

Solving Polynomial Systems With Special Structure

by

Christopher Jacques Hillar

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Bernd Sturmfels, Chair

We solve a collection of problems that give rise to structured systems of polyno-

mial equations. Our tools are diverse, involving the theory of Gröbner bases, quasi-well-

orderings, algebraic combinatorics, group algebras, and Brouwer degree theory. Nonethe-

less, a consistent theme pervades: exploit the underlying combinatorial structure in novel

ways.

The first of these questions involves invariant ideals. Let A be a commutative

Noetherian ring, and let R = A[X] be the polynomial ring in an infinite collection X of

indeterminates over A. Let SX be the permutation group of X. The group SX acts on

R in a natural way, and this in turn gives R the structure of a left module over the group

ring R[SX ]. We prove that all ideals of R invariant under the action of SX are finitely

generated as R[SX ]-modules. The proof involves introducing a certain partial order on

monomials and showing that it is a well-quasi-ordering. We also consider the concept of

an invariant chain of ideals for finite-dimensional polynomial rings and relate it to the

finite generation result mentioned above. Finally, a motivating question from chemistry

is presented, with the above framework providing a suitable context in which to study

it.

We next study a problem involving a special sequence of resultants, stemming

from a question in dynamics. The m-th cyclic resultant of a univariate polynomial
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f ∈ C[x] is

rm = Res(f, xm − 1).

We characterize polynomials having the same set of nonzero cyclic resultants. Generi-

cally, for a polynomial f of degree d, there are 2d−1 distinct degree d polynomials with

the same set of cyclic resultants as f . However, in the generic monic case, degree d

polynomials are uniquely determined by their cyclic resultants. Moreover, two recip-

rocal (“palindromic”) polynomials giving rise to the same set of nonzero rm are equal.

In the process, we also prove a unique factorization result in group algebras involving

products of binomials. Finally, we discuss how our results yield algorithms for explicit

reconstruction of polynomials from their cyclic resultants.

Our third system of equations arises in an unexpected manner from a recent

problem in differential field theory. Given ordinary differential fields K ⊆ E of charac-

teristic zero, it is known that if y ∈ E and 1/y satisfy linear differential equations with

coefficients in K, then y′/y is algebraic over K. We present a new short proof of this

fact using Gröbner basis techniques and give a direct method for finding a polynomial

over K that y′/y satisfies. Moreover, our techniques provide explicit degree bounds. The

chapter concludes with an application of our method to a class of nonlinear differential

equations.

For our final topic, we investigate the existence of solutions to certain matrix

equations, tangentially related to a long-standing (1975) open problem in quantum me-

chanics. Let S(X,B) be a symmetric (“palindromic”) word in two letters X and B. A

theorem due to the author and Johnson states that for each pair of positive definite ma-

trices B and P , there is a positive definite solution X to the word equation S(X,B) = P .

We also conjectured that these solutions are unique. In this chapter, we resolve this con-

jecture (negatively). Furthermore, we prove that, generically, the number of solutions

is odd (and thus finite) in the real case. Our approach utilizes the theory of Brouwer

degree and also provides a second proof of existence of such solutions in the real case.
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Notation

Most of the notation we use is standard. Our definitions will be italicized and

we shall mottle the exposition with them; those that we feel are most important, and

need special emphasis, will be given their own paragraphs. A field will usually be denoted

by the letter K, and the algebraic closure of K is written K. The nonnegative integers

will be denoted by N, while the positive integers are Z+. Additionally, positive real

numbers are indicated by R+. Vectors, such as x = (x1, . . . , xm) ∈ Rm, are typically

displayed using a boldface font.

When there is no ambiguity in context, a matrix all of whose entries are zero

will be simply written as 0. The conjugate transpose of a complex matrix A is denoted

A∗. A principal submatrix of an n× n matrix A is gotten by selecting a submatrix with

the same row and column selectors. A leading principal submatrix of A is a principal

submatrix gotten by choosing row and column selectors that are contiguous and start

with row and column 1. Given a product of matrices P = A1 · · ·Ak and an invertible

matrix S, a uniform similarity of a product P (with respect to the Ai) is a rewriting,

SPS−1 = B1 · · ·Bk, in which each Bi = SAiS
−1.

Let G be a group and R a ring. The (left) group ring of G over R will be

denoted by R[G], although sometimes it will be more notationally convenient to write

this ring as RG.
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Foreward

Mathematics first netted me with the lure of its problems. I soon learned, how-

ever, that significant progress is nearly impossible without piggybacking on the great

discoveries of generations of mathematicians. Even so, I have always felt that the most

interesting and beautiful questions are those that can be stated simply, offer an in-

tellectual challenge, and whose implications can be held in one’s own hand by way of

examples.

Moreover, as isolated as mathematics is from the other realms of academic en-

deavor, it is made even more inscrutable by the fractious nature of its various disciplines.

One must therefore form a compromise between depth of study and breadth of study. Of

course, this is not to say that the first boundary engenders difficulty whereas the second,

triviality.

In this regard, the reader will find, I feel, that I have chosen a happy medium.

The mathematical background necessary to read this entire work is very modest, and

it will, hopefully, appeal to a number of mathematicians, graduate students, and even

upper-level undergraduates. At the same time, the problems we study are rich and

complex, arising from disparate areas of mathematics.

Each chapter is essentially self-contained and can be read independently of any

other. The reader is invited to skip around and find those problems that intrigue him or

her the most. For the benefit of exposition, each chapter contains a section summarizing

the requisite mathematical background.

The results of the first chapter represent joint research with Matthias Aschen-

brenner [4]. The second and third chapters consist of work published in [25] and [24],

respectively. Finally, chapter 4 is the result of collaboration with Scott Armstrong [3].
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Chapter 1

Finite Generation of Symmetric

Ideals

1.1 Introduction

A pervasive theme in invariant theory is that of finite generation. A fundamental ex-

ample is a theorem of Hilbert stating that the invariant subrings of finite-dimensional

polynomial algebras over finite groups are finitely generated [12, Corollary 1.5]. In this

chapter, we study invariant ideals of infinite-dimensional polynomial rings. Of course,

when the number of indeterminates is finite, Hilbert’s basis theorem tells us that any

ideal (invariant or not) is finitely generated.

Our setup is as follows. Let X be an infinite collection of indeterminates, and

let SX be the group of permutations of X. Fix a commutative Noetherian ring A and

let R = A[X] be the polynomial ring in the indeterminates X. The group SX acts

naturally on R: if σ ∈ SX and f ∈ A[x1, . . . , xn] where xi ∈ X, then

σf(x1, x2, . . . , xn) = f(σx1, σx2, . . . , σxn) ∈ R.

This in turn gives R the structure of a left module over the (non-commutative) left group

ring R[SX ]. An ideal I ⊆ R is called invariant under SX (or simply invariant) if

SXI := {σf : σ ∈ SX , f ∈ I} ⊆ I.
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Notice that invariant ideals are simply the R[SX ]-submodules of R. We may now state

our main result.

Theorem 1.1.1. Every ideal of R = A[X] invariant under SX is finitely generated as

an R[SX ]-module. (Stated more succinctly, R is a Noetherian R[SX ]-module.)

For the purposes of this work, we will use the following notation. Let B be

a ring and let G be a subset of a B-module M . Then 〈f : f ∈ G〉B will denote the

B-submodule of M generated by elements of G.

Example 1.1.2. Suppose that X = {x1, x2, . . . }. The invariant ideal I = 〈x1, x2, . . .〉R
is clearly not finitely generated over R, however, it does have the compact representation

I = 〈x1〉R[SX ].

The outline of this chapter is as follows. In Section 1.2, we define a partial

order on monomials and show that it can be used to obtain a well-quasi-ordering of the

monomials in R. Section 1.3 then goes on to detail our proof of Theorem 1.1.1, using

the main result of Section 1.2 in a fundamental way. In the penultimate section, we

discuss a relationship between invariant ideals of R and chains of increasing ideals in

finite-dimensional polynomial rings. The notions introduced there provide a suitable

framework for studying a problem arising from chemistry, the subject of the final section

of this chapter.

1.2 The Symmetric Cancellation Ordering

We begin this section by briefly recalling some basic order-theoretic notions. We also

discuss some fundamental results due to Higman and Nash-Williams and some of their

consequences. We define the ordering mentioned in the section heading, and give a

sufficient condition for it to be a well-quasi-ordering; this is needed in the proof of

Theorem 1.1.1.

1.2.1 Preliminaries

A quasi-ordering on a set S is a binary relation ≤ on S which is reflexive and transitive.

A quasi-ordered set is a pair (S,≤) consisting of a set S and a quasi-ordering ≤ on S.
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When there is no confusion, we will omit ≤ from the notation, and simply call S a quasi-

ordered set. If in addition the relation ≤ is anti-symmetric (s ≤ t ∧ t ≤ s ⇒ s = t,

for all s, t ∈ S), then ≤ is called an ordering (sometimes also called a partial ordering)

on the set S. The trivial ordering on S is given by s ≤ t ⇐⇒ s = t for all s, t ∈ S.

A quasi-ordering ≤ on a set S induces an ordering on the set S/∼ = {s/∼ : s ∈ S} of

equivalence classes of the equivalence relation s ∼ t⇐⇒ s ≤ t ∧ t ≤ s on S. If s and t

are elements of a quasi-ordered set, we write as usual s ≤ t also as t ≥ s, and we write

s < t if s ≤ t and t 6≤ s.

A map ϕ : S → T between quasi-ordered sets S and T is called increasing if

s ≤ t⇒ ϕ(s) ≤ ϕ(t) for all s, t ∈ S, and strictly increasing if s < t⇒ ϕ(s) < ϕ(t) for all

s, t ∈ S. We also say that ϕ : S → T is a quasi-embedding if ϕ(s) ≤ ϕ(t) ⇒ s ≤ t for all

s, t ∈ S.

An antichain of S is a subset A ⊆ S such that s 6≤ t and t 6≤ s for all s 6∼ t

in A. A final segment of a quasi-ordered set (S,≤) is a subset F ⊆ S which is closed

upwards: s ≤ t ∧ s ∈ F ⇒ t ∈ F , for all s, t ∈ S. We can view the set F(S) of final

segments of S as an ordered set, with the ordering given by reverse inclusion. Given a

subset M of S, the set
{
t ∈ S : ∃s ∈ M with s ≤ t

}
is a final segment of S, the final

segment generated by M . An initial segment of S is a subset of S whose complement is

a final segment. An initial segment I of S is proper if I 6= S. For a ∈ S we denote by

S≤a the initial segment consisting of all s ∈ S with s ≤ a.

A quasi-ordered set S is said to be well-founded if there is no infinite strictly

decreasing sequence s1 > s2 > · · · in S, and well-quasi-ordered if in addition every

antichain of S is finite. The following characterization of well-quasi-orderings is classical

(see, for example, [38]). An infinite sequence s1, s2, . . . in S is called good if si ≤ sj for

some indices i < j, and bad otherwise.

Proposition 1.2.1. The following are equivalent, for a quasi-ordered set S:

(1) S is well-quasi-ordered.

(2) Every infinite sequence in S is good.

(3) Every infinite sequence in S contains an infinite increasing subsequence.

3



(4) Any final segment of S is finitely generated.

(5)
(
F(S),⊇

)
is well-founded (i.e., the ascending chain condition holds for final seg-

ments of S).

Let (S,≤S) and (T,≤T ) be quasi-ordered sets. If there exists an increasing

surjection S → T and S is well-quasi-ordered, then T is well-quasi-ordered, and if there

exists a quasi-embedding S → T and T is well-quasi-ordered, then so is S. Moreover,

the cartesian product S×T can be turned into a quasi-orderd set by using the cartesian

product of ≤S and ≤T :

(s, t) ≤ (s′, t′) :⇐⇒ s ≤S s
′ ∧ t ≤T t′, for s, s′ ∈ S, t, t′ ∈ T .

Using Proposition 1.2.1 we see that the cartesian product of two well-quasi-ordered sets

is again well-quasi-ordered.

Of course, a total ordering ≤ is well-quasi-ordered if and only if it is well-

founded; in this case ≤ is called a well-ordering. Every well-ordered set is isomorphic to

a unique ordinal number, called its order type. The order type of N = {0, 1, 2, . . . } with

its usual ordering is ω.

1.2.2 A lemma of Higman

Given a set X, we let X∗ denote the set of all finite sequences of elements of X (including

the empty sequence). We may think of the elements of X∗ as non-commutative words

x1 · · ·xm with letters x1, . . . , xm coming from the alphabet X. With the concatenation

of such words as operation, X∗ is the free monoid generated by X. A quasi-ordering ≤
on X yields a quasi-ordering ≤H (the Higman quasi-ordering) on X∗ as follows:

x1 · · ·xm ≤H y1 · · · yn :⇐⇒


there exists a strictly increasing func-

tion ϕ : {1, . . . ,m} → {1, . . . , n} such

that xi ≤ yϕ(i) for all 1 ≤ i ≤ m.

If ≤ is an ordering on X, then ≤H is an ordering on X∗. The following fact was shown

by Higman [23] (with an ingenious proof due to Nash-Williams [49]):

Lemma 1.2.2. If ≤ is a well-quasi-ordering on X, then ≤H is a well-quasi-ordering on

X∗.
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It follows that if ≤ is a well-quasi-ordering on X, then the quasi-ordering ≤∗

on X∗ defined by

x1 · · ·xm ≤∗ y1 · · · yn :⇐⇒


there exists an injective

function ϕ : {1, . . . ,m} →
{1, . . . , n} such that xi ≤ yϕ(i)

for all 1 ≤ i ≤ m

is also a well-quasi-ordering. (Since ≤∗ extends ≤H.)

We also let X� be the set of commutative words in the alphabet X, that is,

the free commutative monoid generated by X (with identity element denoted by 1). We

sometimes also refer to the elements of X� as monomials (in the set of indeterminates

X). We have a natural surjective monoid homomorphism π : X∗ → X� given by simply

“making the indeterminates commute” (i.e., interpreting a non-commutative word from

X∗ as a commutative word in X�). Unlike ≤H, the quasi-ordering ≤∗ is compatible

with π in the sense that v ≤∗ w ⇒ v′ ≤∗ w′ for all v, v′, w, w′ ∈ X∗ with π(v) = π(v′)

and π(w) = π(w′). Hence π(v) ≤� π(w) :⇐⇒ v ≤∗ w defines a quasi-ordering ≤� on

X� = π(X∗) making π an increasing map. The quasi-ordering ≤� extends the divisibility

relation in the monoid X�:

v|w :⇐⇒ uv = w for some u ∈ X�.

If we take for ≤ the trivial ordering on X, then ≤� corresponds exactly to divisibility in

X�, and this ordering is a well-quasi-ordering if and only if X is finite. In general we

have, as an immediate consequence of Higman’s lemma (since π is a surjection):

Corollary 1.2.3. If ≤ is a well-quasi-ordering on the set X, then ≤� is a well-quasi-

ordering on X�.

1.2.3 A theorem of Nash-Williams

Given a totally ordered set S and a quasi-ordered set X, we denote by Fin(S,X) the

set of all functions f : I → X, where I is a proper initial segment of S, whose range

f(I) is finite. We define a quasi-ordering ≤H on Fin(S,X) as follows: for f : I → X and

5



g : J → X from Fin(S,X) put

f ≤H g :⇐⇒
{ there exists a strictly increasing function

ϕ : I → J such that f(i) ≤ g(ϕ(i)) for all i ∈ I.

We may think of an element of Fin(S,X) as a sequence of elements of X indexed by

indices in some proper intial segment of S. So for S = N with its usual ordering, we can

identify elements of Fin(N, X) with words in X∗, and then ≤H for Fin(N, X) agrees with

≤H on X∗ as defined above. We will have occasion to use a far-reaching generalization

of Lemma 1.2.2:

Theorem 1.2.4. If X is well-quasi-ordered and S is well-ordered, then Fin(S,X) is

well-quasi-ordered.

This theorem was proved by Nash-Williams [50]; special cases were shown ear-

lier in [13, 48, 53].

1.2.4 Term orderings

A term ordering of X� is a well-ordering ≤ of X� such that

(1) 1 ≤ x for all x ∈ X, and

(2) v ≤ w ⇒ xv ≤ xw for all v, w ∈ X� and x ∈ X.

Every ordering ≤ of X� satisfying (1) and (2) extends the ordering ≤� obtained from

the restriction of ≤ to X. In particular, ≤ extends the divisibility ordering on X�. By

Corollary 1.2.3 above, a total ordering ≤ of X� which satisfies (1) and (2) is a term

ordering if and only if its restriction to X is a well-ordering.

Example 1.2.5. Let ≤ be a total ordering of X. We define the induced lexicographic

ordering ≤lex of monomials as follows: given v, w ∈ X� we can write v = xa1
1 · · ·xan

n and

w = xb1
1 · · ·xbn

n with x1 < · · · < xn in X and all ai, bi ∈ N; then

v ≤lex w :⇐⇒ (an, . . . , a1) ≤ (bn, . . . , b1) lexicographically (from the left).

The ordering ≤lex is total and satisfies (1), (2); hence if the ordering ≤ of X is a well-

ordering, then ≤lex is a term ordering of X�.

6



Remark 1.2.6. Let ≤ be a total ordering of X. For w ∈ X�, w 6= 1, we let

|w| := max {x ∈ X : x|w} (with respect to ≤).

We also put |1| := −∞ where we set −∞ < x for all x ∈ X. One of the perks of using

the lexicographic ordering as a term ordering on X� is that if v and w are monomials

with v ≤lex w, then |v| ≤ |w|. Below, we often use this observation.

The previous example shows that for every set X there exists a term ordering

of X�, since every set can be well-ordered by the Axiom of Choice. In fact, every set X

can be equipped with a well-ordering every proper initial segment of which has strictly

smaller cardinality than X; in other words, the order type of this ordering (a certain

ordinal number) is a cardinal number. We shall call such an ordering of X a cardinal

well-ordering of X.

Lemma 1.2.7. Let X be a set equipped with a cardinal well-ordering, and let I be a

proper initial segment of X. Then every injective function I → X can be extended to a

permutation of X.

Proof. Since this is clear if X is finite, suppose that X is infinite. Let ϕ : I → X be

injective. Since I has cardinality |I| < |X| and X is infinite, we have |X| = max {|X \
I|, |I|} = |X \I|. Similarly, since |ϕ(I)| = |I| < |X|, we also have |X \ϕ(I)| = |X|. Hence

there exists a bijection ψ : X \ I → X \ ϕ(I). Combining ϕ and ψ yields a permutation

of X as desired.

1.2.5 A new ordering of monomials

Let G be a permutation group on a set X, that is, a group G together with a faithful

action (σ, x) 7→ σx : G×X → X of G on X. The action of G on X extends in a natural

way to a faithful action of G on X�: σw = σx1 · · ·σxn for σ ∈ G, w = x1 · · ·xn ∈ X�.

Given a term ordering ≤ of X�, we define a new relation on X� as follows:

Definition 1.2.8. (The symmetric cancellation ordering corresponding to G and ≤.)

v � w :⇐⇒


v ≤ w and there exist σ ∈ G and a mono-

mial u ∈ X� such that w = uσv and for

all v′ ≤ v, we have uσv′ ≤ w.

7



Remark 1.2.9. Every term ordering ≤ is linear : v ≤ w ⇐⇒ uv ≤ uw for all monomials

u, v, w. Hence the condition above may be rewritten as: v ≤ w and there exists σ ∈ G

such that σv|w and σv′ ≤ σv for all v′ ≤ v. (We say that “σ witnesses v � w.”)

Example 1.2.10. Let X = {x1, x2, . . . } be a countably infinite set of indeterminates,

ordered such that x1 < x2 < · · · , and let ≤ = ≤lex be the corresponding lexicographic

ordering of X�. Let also G be the group of permutations of {1, 2, 3, . . . }, acting on X

via σxi = xσ(i). As an example of the relation �, consider the following chain:

x2
1 � x1x

2
2 � x3

1x2x
2
3.

To verify the first inequality, notice that x1x
2
2 = x1σ(x2

1), in which σ is the transposition

(1 2). If v′ = xa1
1 · · ·xan

n ≤ x2
1 with a1, . . . , an ∈ N, an > 0, then it follows that n = 1 and

a1 ≤ 2. In particular, x1σv
′ = x1x

a1
2 ≤ x1x

2
2. For the second relationship, we have that

x3
1x2x

2
3 = x3

1τ(x1x
2
2), in which τ is the cycle (1 2 3). Additionally, if v′ = xa1

1 · · ·xan
n ≤

x1x
2
2 with a1, . . . , an ∈ N, an > 0, then n ≤ 2, and if n = 2, then either a2 = 1 or a2 = 2,

a1 ≤ 1. In each case we get x3
1τv

′ = x3
1x

a1
2 x

a2
3 ≤ x3

1x2x
2
3.

Although Definition 1.2.8 appears technical, we will soon present a nice inter-

pretation of it that involves leading term cancellation of polynomials. First we verify

that it is indeed an ordering.

Lemma 1.2.11. The relation � is an ordering on monomials.

Proof. First notice that w � w since we may take u = 1 and σ to be the identity

permutation. Next, suppose that u � v � w. Then there exist permutations σ, τ

in G and monomials u1, u2 in X� such that v = u1σu, w = u2τv. In particular,

w = u2(τu1)(τσu). Additionally, if v′ ≤ u, then u1σv
′ ≤ v, so that u2τ(u1σv

′) ≤ w

(since ≤ is a term ordering). It follows that u2(τu1)(τσv′) ≤ w. This shows transitivity;

anti-symmetry of � follows from anti-symmetry of ≤.

We offer a useful interpretation of this ordering (which motivates its name). We

fix a commutative ring A and let R = A[X] be the ring of polynomials with coefficients

from A in the collection of commuting indeterminates X. Its elements may be written
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uniquely in the form

f =
∑

w∈X�

aww

where aw ∈ A for all w ∈ X�, and all but finitely many aw are zero. We say that

a monomial w occurs in f if aw 6= 0. Given a nonzero f ∈ R we define lm(f), the

leading monomial of f (with respect to our choice of term ordering ≤) to be the largest

monomial w (with respect to ≤) which occurs in f . If w = lm(f), then aw is the leading

coefficient of f , denoted by lc(f), and aww is the leading term of f , denoted by lt(f).

By convention, we set lm(0) = lc(0) = lt(0) = 0. We let R[G] be the (left) group ring of

G over R (with multiplication given by fσ · gτ = fg(στ) for f, g ∈ R, σ, τ ∈ G), and we

view R as a left R[G]-module in the natural way.

Lemma 1.2.12. Let f ∈ R, f 6= 0, and u,w ∈ X�. Suppose that σ ∈ G witnesses

lm(f) � w, and let u ∈ X� with uσ lm(f) = w. Then lm(uσf) = uσ lm(f).

Proof. Put v = lm(f). Every monomial occurring in uσf has the form uσv′, where v′

occurs in f . Hence v′ ≤ v, and since σ witnesses v � w, this yields uσv′ ≤ w.

Suppose that A is a field, let v � w be in X�, and let f , g be two polynomials in

R with leading monomials v, w, respectively. Then, from the definition and the lemma

above, there exists a σ ∈ G and a term cu (c ∈ A \ {0}, u ∈ X�) such that all monomials

occurring in

h = g − cuσf

are strictly smaller (with respect to ≤) than w. For readers familiar with the theory of

Gröbner bases, the polynomial h can be viewed as a kind of symmetric version of the

S-polynomial (see, for instance, [12, Chapter 15]).

Example 1.2.13. In the situation of Example 1.2.10 above, let f = x1x
2
2 + x2 + x2

1 and

g = x3
1x2x

2
3 + x2

3 + x4
1x3. Set σ = (1 2 3), and observe that

g − x3
1σf = x4

1x3 + x2
3 − x3

1x3 − x3
1x

2
2

has a smaller leading monomial than g.

We are mostly interested in the case where our term ordering on X� is ≤lex,

and G = SX . Under these assumptions we have:
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Lemma 1.2.14. Let v, w ∈ X� with v � w. Then for every σ ∈ SX witnessing v � w

we have σ(X≤|v|) ⊆ X≤|w|. Moreover, if the order type of (X,≤) is ≤ ω, then we can

choose such σ with the additional property that σ(x) = x for all x > |w|.

Proof. To see the first claim, suppose for a contradiction that σx > |w| for some x ∈ X,

x ≤ |v|. We have σv|w, so if x|v, then σx|w, contradicting σx > |w|. In particular

x < |v|, which yields x <lex v and thus σx ≤lex σv ≤lex w, again contradicting σx > |w|.
Now suppose that the order type of X is ≤ ω, and let σ witness v � w. Then |v| ≤ |w|,
and σ � X≤|v| can be extended to a permutation σ′ of the finite set X≤|w|. We further

extend σ′ to a permutation of X by setting σ′(x) = x for all x > |w|. One checks easily

that σ′ still witnesses v � w.

1.2.6 Lovely orderings

We say that a term ordering ≤ of X� is lovely for G if the corresponding symmetric

cancellation ordering � on X� is a well-quasi-ordering. If ≤ is lovely for a subgroup of

G, then ≤ is lovely for G.

Example 1.2.15. The symmetric cancellation ordering corresponding to G = {1} and

a given term ordering ≤ of X� is just

v � w ⇐⇒ v ≤ w ∧ v|w.

Hence a term ordering of X� is lovely for G = {1} if and only if divisibility in X� has

no infinite antichains; that is, exactly if X is finite.

This terminology is inspired by the following definition from [7] (which in turn

goes back to an idea in [2]):

Definition 1.2.16. Given an ordering ≤ of X, consider the following ordering of X:

x v y :⇐⇒
{

x ≤ y and there exists σ ∈ G such that

σx = y and for all x′ ≤ x, we have σx′ ≤ y.

A well-ordering ≤ of X is called nice (for G) if v is a well-quasi-ordering.

In [2] one finds various examples of nice orderings, and in [7] it is shown that

if X admits a nice ordering with respect to G, then for every field F , the free F -module
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FX with basis X is Noetherian as a module over F [G]. It is clear that the restriction

to X of a lovely ordering of X� is nice. However, there do exist permutation groups

(G,X) for which X admits a nice ordering, but X� does not admit a lovely ordering; see

Example 1.3.4 and Proposition 1.5.2 below.

Example 1.2.17. Suppose that X is countable. Then every well-ordering of X of order

type ω is nice for SX . To see this, we may assume that X = N with its usual ordering.

It is then easy to see that if x ≤ y in N, then x v y, witnessed by any extension σ of the

strictly increasing map n 7→ n+ y − x : N≤x → N to a permutation of N.

The following crucial fact (generalizing the last example) is needed for our proof

of Theorem 1.1.1:

Theorem 1.2.18. The lexicographic ordering of X� corresponding to a cardinal well-

ordering of a set X is lovely for the full symmetric group SX of X.

For the proof, let as above Fin(X,N) be the set of all sequences in N indexed

by elements in some proper initial segment of X which have finite range, quasi-ordered

by ≤H. For a monomial w 6= 1 we define w∗ : X≤|w| → N by

w∗(x) := max {a ∈ N : xa|w}.

Then clearly w∗ ∈ Fin(X,N), in fact, w∗(x) = 0 for all but finitely many x ∈ X≤|w|. We

also let 1∗ := the empty sequence ∅ → N (the unique smallest element of Fin(X,N)).

We now quasi-order X�×Fin(X,N) by the cartesian product of the ordering ≤lex on X�

and the quasi-ordering ≤H on Fin(X,N). By Corollary 1.2.3, Theorem 1.2.4, and the

remark following Proposition 1.2.1, X� × Fin(X,N) is well-quasi-ordered. Therefore, in

order to finish the proof of Theorem 1.2.18, it suffices to show:

Lemma 1.2.19. The map

w 7→ (w,w∗) : X� → X� × Fin(X,N)

is a quasi-embedding with respect to the symmetric cancellation ordering on X� and the

quasi-ordering on X� × Fin(X,N).
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Proof. Suppose that v, w are monomials with v ≤lex w and v∗ ≤H w∗; we need to show

that v � w. For this we may assume that v, w 6= 1. So there exists a strictly increasing

function ϕ : X≤|v| → X≤|w| such that

v∗(x) ≤ w∗(ϕ(x)) for all x ∈ X with x ≤ |v|. (1.2.1)

By Lemma 1.2.7 there exists σ ∈ SX such that σ � X≤|v| = ϕ � X≤|v|. Then clearly

σv|w by (1.2.1). Now let v′ ≤lex v; we claim that σv′ ≤lex σv. Again we may assume

v′ 6= 1. Then |v′| ≤ |v|, hence we may write

v′ = xa1
1 · · ·xan

n , v = xb1
1 · · ·xbn

n

with x1 < · · · < xn ≤ |v| in X and ai, bj ∈ N. Put y1 := ϕ(x1), . . . , yn := ϕ(xn). Then

y1 < · · · < yn and

σv′ = ya1
1 · · · yan

n , σv = yb1
1 · · · ybn

n ,

and therefore σv′ ≤lex σv as required.

1.2.7 The case of countable X

In Section 4 we will apply Theorem 1.2.18 in the case where X is countable. Then the

order type of X is at most ω, and in the proof of the theorem given above we only need

to appeal to a special instance (Higman’s Lemma) of Theorem 1.2.4. We finish this

section by giving a self-contained proof of this important special case of Theorem 1.2.18,

avoiding Theorem 1.2.4. Let S(X) denote the subgroup of SX consisting of all σ ∈ SX

with the property that σ(x) = x for all but finitely many letters x ∈ X.

Theorem 1.2.20. The lexicographic ordering of X� corresponding to a cardinal well-

ordering of a countable set X is lovely for S(X).

Let X be countable and let ≤ be a cardinal well-ordering of X. Enumerate the

elements of X as x1 < x2 < · · · . We assume that X is infinite; this is not a restriction,

since by Lemma 1.2.14 we have:

Lemma 1.2.21. If the lexicographic ordering of X� is lovely for S(X), then for any n

and Xn := {x1, . . . , xn}, the lexicographic ordering of (Xn)� is lovely for SXn.
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We begin with some preliminary lemmas. Here, � is the symmetric cancellation

ordering corresponding to S(X) and ≤lex. We identifty S(X) and S∞ := S(N) in the

natural way, and for every n we regard Sn, the group of permutations of {1, 2, . . . , n},
as a subgroup of S∞; then Sn ≤ Sn+1 for each n, and S∞ =

⋃
n Sn.

Lemma 1.2.22. Suppose that xa1
1 · · ·xan

n � xb1
1 · · ·xbn

n where ai, bj ∈ N, bn > 0. Then

for any c ∈ N we have xa1
1 · · ·xan

n � xc
1x

b1
2 · · ·xbn

n+1.

Proof. Let v := xa1
1 · · ·xan

n , w := xb1
1 · · ·xbn

n . We may assume v 6= 1. Clearly v ≤lex w and

bn > 0 yield xa1
1 · · ·xan

n ≤lex x
c
1x

b1
2 · · ·xbn

n+1. Let now σ ∈ S∞ witness v � w. Let τ be

the cyclic permutation τ = (1 2 3 · · · (n+ 1)) and set σ̂ := τσ. Then σv|w yields σ̂v|τw,

hence σ̂v|xc
1τw = xc

1x
b1
2 · · ·xbn

n+1. Next, suppose that v′ ≤lex v; then σv′ ≤lex σv. By

Lemma 1.2.14 and the nature of τ , the map τ � σ({1, . . . , |v|}) is strictly increasing, which

gives σ̂v′ = τσv′ ≤lex τσv = σ̂v. Therefore, σ̂ witnesses xa1
1 · · ·xan

n � xc
1x

b1
2 · · ·xbn

n+1.

Lemma 1.2.23. If xa1
1 · · ·xan

n � xb1
1 · · ·xbn

n , where ai, bj ∈ N, bn > 0, and a, b ∈ N are

such that a ≤ b, then xa
1x

a1
2 · · ·xan

n+1 � xb
1x

b1
2 · · ·xbn+1

n+1 .

Proof. As before let v := xa1
1 · · ·xan

n , w := xb1
1 · · ·xbn

n . Once again, we may assume v 6= 1,

and it is clear that xa
1x

a1
2 · · ·xan

n+1 ≤lex xb
1x

b1
2 · · ·xbn+1

n+1 . Let σ ∈ S∞ witness v � w.

By Lemma 1.2.14 we may assume that σ(xi) = xi for all i > n. Let τ be the cyclic

permutation τ = (1 2 · · · (n+ 1)). Setting σ̂ = τστ−1, we have σ̂x1 = x1, and hence

σ̂(xa
1x

a1
2 · · ·xan

n+1) = σ̂(xa
1)σ̂(xa1

2 · · ·xan
n+1) = xa

1τσv. (1.2.2)

Since σv|w, this last expression divides xb
1τw = xb

1x
b1
2 · · ·xbn

n+1. Suppose that v′ =

xc1
1 · · ·xcn+1

n+1 ≤lex x
a
1x

a1
2 · · ·xan

n+1, where ci ∈ N. Then, since we are using lexicographic

order, we have

xc2
2 · · ·xcn+1

n+1 ≤lex x
a1
2 · · ·xan

n+1

and therefore

τ−1(xc2
2 · · ·xcn+1

n+1 ) = xc2
1 · · ·xcn+1

n ≤lex τ
−1(xa1

2 · · ·xan
n+1) = v.

By assumption, this implies that στ−1(xc2
2 · · ·xcn+1

n+1 ) ≤lex σv and thus by (1.2.2)

σ̂(xc2
2 · · ·xcn+1

n+1 ) ≤lex τσv = σ̂(xa1
2 · · ·xan

n+1).
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If this inequality is strict, then since 1 /∈ σ̂
(
{2, . . . , n+ 1}

)
, clearly

σ̂v′ = xc1
1 σ̂(xc2

2 · · ·xcn+1

n+1 ) <lex x
a
1τσv = σ̂(xa

1x
a1
2 · · ·xan

n+1).

Otherwise, we have xc2
2 · · ·xcn+1

n+1 = xa1
2 · · ·xan

n+1 so that c1 ≤ a. In this case we still have

σ̂v′ ≤lex σ̂(xa
1x

a1
2 · · ·xan

n+1). It follows that σ̂ witnesses xa
1x

a1
2 · · ·xan

n+1 � xb
1x

b1
2 · · ·xbn+1

n+1 .

This completes the proof.

We now have enough to show Theorem 1.2.20. The proof uses the basic idea

from Nash-Williams’ proof [50] of Higman’s lemma. Assume for the sake of contradiction

that there exists a bad sequence

w(1), w(2), . . . , w(n), . . . in X�.

For w ∈ X� \ {1} let j(w) be the index j ≥ 1 with |w| = xj , and put j(1) := 0. We

may assume that the bad sequence is chosen in such a way that for every n, j(w(n)) is

minimal among the j(w), where w ranges over all elements of X� with the property that

w(1), w(2), . . . , w(n−1), w can be continued to a bad sequence in X�. Because 1 ≤lex w

for all w ∈ X�, we have j(w(n)) > 0 for all n. For every n > 0, write w(n) = xa(n)

1 v(n)

with a(n) ∈ N and v(n) ∈ X� not divisible by x1. Since N is well-ordered, there is an

infinite sequence 1 ≤ i1 < i2 < · · · of indices such that a(i1) ≤ a(i2) ≤ · · · . Consider

the monoid homomorphism α : X� → X� given by α(xi+1) = xi for all i > 1. Then

j(α(w)) = j(w)− 1 if w 6= 1. Hence by minimality of w(1), w(2), . . . , the sequence

w(1), w(2), . . . , w(i1−1), α(v(i1)), α(v(i2)), . . . , α(v(in)), . . .

is good; that is, there exist j < i1 and k with w(j) � α(v(ik)), or there exist k < l

with α(v(ik)) � α(v(il)). In the first case we have w(j) � w(ik) by Lemma 1.2.22; and

in the second case, w(ik) � w(il) by Lemma 1.2.23. This contradicts the badness of our

sequence w(1), w(2), . . . , finishing the proof.

Question 1.2.24. Careful inspection of the proof of Theorem 1.2.18 (in particular Lemma 1.2.7)

shows that in the statement of the theorem, we can replace SX by its subgroup consist-

ing of all σ with the property that the set of x ∈ X with σ(x) 6= x has cardinality < |X|.
In Theorem 1.2.18, can one always replace SX by S(X)?
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1.3 Proof of the Finiteness Theorem

We now come to the proof our main result. Throughout this section we let A be a com-

mutative Noetherian ring, X an arbitrary set, R = A[X], and we let G be a permutation

group on X. An R[G]-submodule of R will be called a G-invariant ideal of R, or simply

an invariant ideal, if G is understood. We will show:

Theorem 1.3.1. If X� admits a lovely term ordering for G, then R is Noetherian as

an R[G]-module.

For G = {1} and X finite, this theorem reduces to Hilbert’s basis theorem, by

Example 1.2.15. We also obtain Theorem 1.1.1:

Corollary 1.3.2. The R[SX ]-module R is Noetherian.

Proof. Choose a cardinal well-ordering of X. Then the corresponding lexicographic

ordering of X� is lovely for SX , by Theorem 1.2.18. Apply Theorem 1.3.1.

Remark 1.3.3. It is possible to replace the use of Theorem 1.2.18 in the proof of the corol-

lary above by the more elementary Theorem 1.2.20. This is because if the R[SX ]-module

R was not Noetherian, then one could find a countably generated R[SX ]-submodule of

R which is not finitely generated, and hence a countable subset X ′ of X such that

R′ = A[X ′] is not a Noetherian R′[SX′ ]-module.

The following example shows how the conclusion of Theorem 1.3.1 may fail:

Example 1.3.4. Suppose that G has a cyclic subgroup H which acts freely and transi-

tively on X. Then X has a nice ordering (see [2]), but R = Q[X�] is not Noetherian. To

see this let σ be a generator for H, and let x ∈ X be arbitrary. Then the R[G]-submodule

of R = Q[X�] generated by the elements σnxσ−nx (n ∈ N) is not finitely generated. So

by Theorem 1.3.1, X� does not admit a lovely term ordering for G.

For the proof of Theorem 1.3.1 we develop a bit of Gröbner basis theory for the

R[G]-module R. For the time being, we fix an arbitrary term ordering ≤ (not necessarily

lovely for G) of X�.
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1.3.1 Reduction of polynomials

Let f ∈ R, f 6= 0, and let B be a set of nonzero polynomials in R. We say that f is

reducible by B if there exist pairwise distinct g1, . . . , gm ∈ B, m ≥ 1, such that for each

i we have lm(gi) � lm(f), witnessed by some σi ∈ G, and

lt(f) = a1w1σ1 lt(g1) + · · ·+ amwmσm lt(gm)

for nonzero ai ∈ A and monomials wi ∈ X� such that wiσi lm(gi) = lm(f). In this case

we write f −→
B

h, where

h = f −
(
a1w1σ1g1 + · · ·+ amwmσmgm

)
,

and we say that f reduces to h by B. We say that f is reduced with respect to B if f

is not reducible by B. By convention, the zero polynomial is reduced with respect to B.

Trivially, every element of B reduces to 0.

Example 1.3.5. Suppose that A is a field. Then f is reducible by B if and only if there

exists some g ∈ B such that lm(g) � lm(f).

Example 1.3.6. Suppose that f is reducible by B as defined (for finite X) in, say, [1,

Chapter 4], that is: there exist g1, . . . , gm ∈ B and a1, . . . , am ∈ A (m ≥ 1) such that

lm(gi)| lm(f) for all i and

lc(f) = a1 lc(g1) + · · ·+ am lc(gm).

Then f is reducible by B in the sense defined above. (Taking σi = 1 for all i.)

Remark 1.3.7. Suppose that G = SX , the term ordering ≤ of X� is ≤lex, and the order

type of (X,≤) is ≤ ω. Then in the definition of reducibility by B above, we may require

that the σi satisfy σi(x) = x for all 1 ≤ i ≤ m and x > | lm(f)|. (By Lemma 1.2.14.)

The smallest quasi-ordering on R extending the relation −→
B

is denoted by ∗−→
B

.

If f, h 6= 0 and f −→
B

h, then lm(h) < lm(f), by Lemma 1.2.12. In particular, every

chain

h0 −→
B

h1 −→
B

h2 −→
B

· · ·
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with all hi ∈ R \ {0} is finite. (Since the term ordering ≤ is well-founded.) Hence there

exists r ∈ R such that f ∗−→
B

r and r is reduced with respect to B; we call such an r a

normal form of f with respect to B.

Lemma 1.3.8. Suppose that f ∗−→
B

r. Then there exist g1, . . . , gn ∈ B, σ1, . . . , σn ∈ G

and h1, . . . , hn ∈ R such that

f = r +
n∑

i=1

hiσigi and lm(f) ≥ max
1≤i≤n

lm(hiσigi).

(In particular, f − r ∈ 〈B〉R[G].)

Proof. This is clear if f = r. Otherwise we have f −→
B

h
∗−→
B

r for some h ∈ R. Induc-

tively we may assume that there exist g1, . . . , gn ∈ B, σ1, . . . , σn ∈ G and h1, . . . , hn ∈ R
such that

h = r +
n∑

i=1

hiσigi and lm(h) ≥ max
1≤i≤n

lm(hiσigi).

There are also gn+1, . . . , gn+m ∈ B, σn+1, . . . , σn+m ∈ G, an+1, . . . , an+m ∈ A and

wn+1, . . . , wn+m ∈ X� such that lm(wn+iσn+ign+i) = lm(f) for all i and

lt(f) =
m∑

i=1

an+iwn+iσn+i lt(gn+i), f = h+
m∑

i=1

an+iwn+iσn+ign+i.

Hence putting hn+i := an+iwn+i for i = 1, . . . ,m we have f = r +
∑n+m

j=1 hjσjgj and

lm(f) > lm(h) ≥ lm(hjσjgj) if 1 ≤ j ≤ n, lm(f) = lm(hjσjgj) if n < j ≤ n+m.

Remark 1.3.9. Suppose that G = SX , ≤ = ≤lex, and X has order type ≤ ω. Then in

the previous lemma we can choose the σi such that in addition σi(x) = x for all i and

all x > | lm(f)|. (By Remark 1.3.7.)

1.3.2 Gröbner bases

Let B be a subset of R. We let

lt(B) :=
〈
lc(g)w : 0 6= g ∈ B, lm(g) � w

〉
A

be the A-submodule of R generated by all elements of the form lc(g)w, where g ∈ B

is nonzero and w is a monomial with lm(g) � w. Clearly for nonzero f ∈ R we have:
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lt(f) ∈ lt(B) if and only if f is reducible by B. In particular, lt(B) contains
{

lt(g) : g ∈
B
}
, and for an ideal I of R which is G-invariant, we simply have

lt(I) =
{

lt(f) : f ∈ I
}
.

(Use Lemma 1.2.12.) We say that a subset B of an invariant ideal I of R is a Gröbner

basis for I (with respect to our choice of term ordering ≤) if lt(I) = lt(B).

Lemma 1.3.10. Let I be an invariant ideal of R and B be a set of nonzero elements of

I. The following are equivalent:

(1) B is a Gröbner basis for I.

(2) Every nonzero f ∈ I is reducible by B.

(3) Every f ∈ I has normal form 0. (In particular, I = 〈B〉R[G].)

(4) Every f ∈ I has unique normal form 0.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are either obvious or follow from the

remarks preceding the lemma. Suppose that (4) holds. Every f ∈ I \ {0} with lt(f) /∈
lt(B) is reduced with respect to B, hence has two distinct normal forms (0 and f), a

contradiction. Thus lt(I) = lt(B).

Suppose that B is a Gröbner basis for an ideal I of the polynomial ring R =

A[X�], in the usual sense of the word (as defined, for finite X, in [1, Chapter 4]); if I is

invariant, then B is a Gröbner basis for I as defined above (by Example 1.3.6). Moreover,

for G = {1}, the previous lemma reduces to a familiar characterization of Gröbner bases

in the usual case of polynomial rings. It is probably possible to also introduce a notion of

S-polynomial and to prove a Buchberger-style criterion for Gröbner bases in our setting,

leading to a completion procedure for the construction of Gröbner bases. At this point,

we will not pursue these issues further, and rather show:

Proposition 1.3.11. Suppose that the term ordering ≤ of X� is lovely for G. Then

every invariant ideal of R has a finite Gröbner basis.
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For a subset B of R let lm(B) denote the final segment of X� with respect to

� generated by the lm(g), g ∈ B. If A is a field, then a subset B of an invariant ideal

I of R is a Gröbner basis for I if and only if lm(B) = lm(I). Hence in this case, the

proposition follows immediately from the equivalence of (1) and (4) in Proposition 1.2.1.

For the general case we use the following observation:

Lemma 1.3.12. Let S be a well-quasi-ordered set and T be a well-founded ordered set,

and let ϕ : S → T be decreasing: s ≤ t ⇒ ϕ(s) ≥ ϕ(t), for all s, t ∈ S. Then the

quasi-ordering ≤ϕ on S defined by

s ≤ϕ t :⇐⇒ s ≤ t ∧ ϕ(s) = ϕ(t)

is a well-quasi-ordering.

Proof of Proposition 1.3.11. Suppose now that our term ordering of X� is lovely for G,

and let I be an invariant ideal of R. For w ∈ X� consider

lc(I, w) :=
{

lc(f) : f ∈ I, and f = 0 or lm(f) = w
}
,

an ideal of A. Note that if v � w, then lc(I, v) ⊆ lc(I, w). We apply the lemma to

S = X�, quasi-ordered by �, T = the collection of all ideals of A, ordered by reverse

inclusion, and ϕ given by w 7→ lc(I, w). Thus by (4) in Proposition 1.2.1, applied to the

final segment X� of the well-quasi-ordering ≤ϕ, we obtain finitely many w1, . . . , wm ∈ X�

with the following property: for every w ∈ X� there exists some i ∈ {1, . . . ,m} such that

wi � w and lc(I, wi) = lc(I, w). Using Noetherianity of A, for every i we now choose

finitely many nonzero elements gi1, . . . , gini of I (ni ∈ N), each with leading monomial

wi, whose leading coefficients generate the ideal lc(I, wi) of A. We claim that

B := {gij : 1 ≤ i ≤ m, 1 ≤ j ≤ ni}

is a Gröbner basis for I. To see this, let 0 6= f ∈ I, and put w := lm(f). Then there

is some i with wi � w and lc(I, wi) = lc(I, w). This shows that f is reducible by

{gi1, . . . , gi,ni}, and hence by B. By Lemma 1.3.10, B is a Gröbner basis for I.

From Proposition 1.3.11 and the implication (1) ⇒ (3) in Lemma 1.3.10 we

obtain Theorem 1.3.1.
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1.3.3 A partial converse of Theorem 1.3.1

Consider now the quasi-ordering |G of X� defined by

v|Gw :⇐⇒ ∃σ ∈ G : σv|w,

which extends every symmetric cancellation ordering corresponding to a term ordering

of X�. If M is a set of monomials from X� and F the final segment of (X�, |G) generated

by M , then the invariant ideal 〈M〉R[G] of R is finitely generated as an R[G]-module if

and only if F is generated by a finite subset of M . Hence by the implication (4) ⇒ (1)

in Proposition 1.2.1 we get:

Lemma 1.3.13. If R is Noetherian as an R[G]-module, then |G is a well-quasi-ordering.

This will be used in Section 1.5 below.

1.3.4 Connection to a concept due to Michler

Let ≤ be a term ordering of X�. For each σ ∈ G we define a term ordering ≤σ on X� by

v ≤σ w ⇐⇒ σv ≤ σw.

We denote the leading monomial of f ∈ R with respect to ≤σ by lmσ(f). Clearly we

have

σ lm(f) = lmσ−1(σf) for all σ ∈ G and f ∈ R. (1.3.1)

Let I be an invariant ideal of R. Generalizing terminology introduced in [45], let us call

a set B of nonzero elements of I a universal G-Gröbner basis for I (with respect to ≤)

if B contains, for every σ ∈ G, a Gröbner basis (in the usual sense of the word) for the

ideal I with respect to the term ordering ≤σ. If the set X of indeterminates is finite,

then every invariant ideal of R has a finite universal G-Gröbner basis. By the remark

following Lemma 1.3.10, every universal G-Gröbner basis for an invariant ideal I of R is

a Gröbner basis for I. We finish this section by observing:

Lemma 1.3.14. Suppose that A is field. If B is a Gröbner basis for the invariant ideal

I of R, then

GB = {σg : σ ∈ G, g ∈ B}
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is a universal G-Gröbner basis for I.

Proof. Let σ ∈ G and f ∈ I, f 6= 0. Then σf ∈ I, hence there exists τ ∈ G and g ∈ B
such that w ≤ lm(g) ⇒ w ≤τ lm(g) for all w ∈ X�, and τ lm(g)| lm(σf). The first

condition implies in particular that τ lm(g) = lm(τg), hence σ−1τ lm(g) = lmσ(σ−1τg)

and σ−1 lm(σf) = lmσ(f) by (1.3.1). Put h := σ−1τg ∈ GB. Then lmσ(h)| lmσ(f) by

the second condition. This shows that GB contains a Gröbner basis for I with respect

to ≤σ, as required.

Example 1.3.15. Suppose that G = Sn, the group of permutations of {1, 2, . . . , n},
acting on X = {x1, . . . , xn} via σxi = xσ(i). The invariant ideal I = 〈x1, . . . , xn〉R has

Gröbner basis {x1} with respect to the lexicographic ordering; a corresponding (minimal)

universal Sn-Gröbner basis for I is {x1, . . . , xn}.

1.4 Invariant Chains of Ideals

In this section we describe a relationship between certain chains of increasing ideals in

finite-dimensional polynomials rings and invariant ideals of infinite-dimensional polyno-

mial rings. We begin with an abstract setting that is suitable for placing the motivating

problem (described in the next section) in a proper context. Throughout this section,

m and n range over the set of positive integers. For each n, let Rn be a commutative

ring, and assume that Rn is a subring of Rn+1, for each n. Suppose that the sym-

metric group on n letters Sn gives an action (not necessarily faithful) on Rn such that

f 7→ σf : Rn → Rn is a ring homomorphism, for each σ ∈ Sn. Furthermore, suppose

that the natural embedding of Sn into Sm for n ≤ m is compatible with the embedding

of rings Rn ⊆ Rm; that is, if σ ∈ Sn and σ̂ is the corresponding element in Sm, then

σ̂ � Rn = σ. Note that there exists a unique action of S∞ on the ring R :=
⋃

n≥1Rn

which extends the action of each Sn on Rn. An ideal of R is invariant if σf ∈ I for all

σ ∈ S∞, f ∈ I.
We will need a method for lifting ideals of smaller rings into larger ones, and

one such technique is as follows.

Definition 1.4.1. For m ≥ n, the m-symmetrization Lm(B) of a set B of elements of
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Rn is the Sm-invariant ideal of Rm given by

Lm(B) = 〈g : g ∈ B〉Rm[Sm]

In order for us to apply this definition sensibly, we must make sure that the

m-symmetrization of an ideal can be defined in terms of generators.

Lemma 1.4.2. If B is a set of generators for the ideal IB = 〈B〉Rn of Rn, then Lm(IB) =

Lm(B).

Proof. Suppose that B generates the ideal IB ⊆ Rn. Clearly, Lm(B) ⊆ Lm(IB). There-

fore, it is enough to show the inclusion Lm(IB) ⊆ Lm(B). Suppose that h ∈ Lm(IB) so

that h =
∑s

j=1 fj · σjhj for elements fj ∈ Rm, hj ∈ IB and σj ∈ Sm. Next express each

hj =
∑rj

i=1 pijgij for pij ∈ Rn and gij ∈ B. Substitution into the expression above for h

gives us

h =
s∑

j=1

rj∑
i=1

fj · σjpij · σjgij .

This is easily seen to be an element of Lm(B), completing the proof.

Example 1.4.3. Let S = Q[t1, t2], Rn = Q[x1, . . . , xn], and consider the natural action

of Sn on Rn. Let Q be the kernel of the homomorphism induced by the map φ : R3 → S

given by φ(x1) = t21, φ(x2) = t22, and φ(x3) = t1t2. Then, Q = 〈x1x2 − x2
3〉, and

L4(Q) ⊆ R4 is generated by the following 12 polynomials:

x1x2 − x2
3, x1x2 − x2

4, x1x3 − x2
2, x1x3 − x2

4,

x1x4 − x2
3, x1x4 − x2

2, x2x3 − x2
1, x2x3 − x2

4,

x2x4 − x2
1, x2x4 − x2

3, x3x4 − x2
1, x3x4 − x2

2.

We would also like a way to project a set of elements in Rm down to a smaller

ring Rn (n ≤ m).

Definition 1.4.4. Let B ⊆ Rm and n ≤ m. The n-projection Pn(B) of B is the

Sn-invariant ideal of Rn given by

Pn(B) = 〈g : g ∈ B〉Rm[Sm] ∩Rn.
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We now consider increasing chains I◦ of ideals In ⊆ Rn:

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · ,

simply called chains below. Of course, such chains will usually fail to stabilize since

they are ideals in larger and larger rings. However, it is possible for these ideals to

stabilize “up to the action of the symmetric group,” a concept we make clear below.

For the purposes of this work, we will only consider a special class of chains; namely,

a symmetrization invariant chain (resp. projection invariant chain) is one for which

Lm(In) ⊆ Im (resp. Pn(Im) ⊆ In) for all n ≤ m. If I◦ is both a symmetrization and

a projection invariant chain, then it will be simply called an invariant chain. We will

encounter some concrete invariant chains in the next section. The stabilization definition

alluded to above is as follows.

Definition 1.4.5. A symmetrization invariant chain of ideals I◦ as above stabilizes

modulo the symmetric group (or simply stabilizes) if there exists a positive integer N

such that

Lm(In) = Im for all m ≥ n > N .

To put it another way, accounting for the natural action of the symmetric group,

the ideals In are the same for large enough n. Let us remark that if for a symmetrization

invariant chain I◦, there is some integer N such that Lm(IN ) = Im for all m > N , then

I◦ stabilizes. This follows from the inclusions

Im = Lm(IN ) ⊆ Lm(In) ⊆ Im, n > N.

Any chain I◦ naturally gives rise to an ideal I(I◦) of R =
⋃

n≥1Rn by way of

I(I◦) :=
⋃
n≥1

In.

Conversely, if I is an ideal of R, then

In = Jn(I) := I ∩Rn

defines the components of a chain J (I) := I◦. Clearly, for any ideal I ⊆ R, we have

I ◦J (I) = I, but, as is easily seen, it is not true in general that J ◦I(I◦) = I◦. However,
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for invariant chains, this relationship does hold, as the following straightforward lemma

describes.

Lemma 1.4.6. There is a one-to-one, inclusion-preserving correspondence between in-

variant chains I◦ and invariant ideals I of R given by the maps I and J .

For the remainder of this section we consider the case where, for a commutative

Noetherian ring A, we have Rn = A[x1, . . . , xn] for each n, endowed with the natural

action of Sn on the indeterminates x1, . . . , xn. Then R = A[X�] where X = {x1, x2, . . . }.
We use the results of the previous section to demonstrate the following.

Theorem 1.4.7. Every symmetrization invariant chain stabilizes modulo the symmetric

group.

Proof. Given a symmetrization invariant chain, construct the invariant ideal I = I(I◦)

of R. One would now like to apply Theorem 1.1.1, however, more care is needed to prove

stabilization. Let ≤ be a well-ordering of X of order type ω, and let B be a finite Gröbner

basis for I with respect to the corresponding term ordering ≤lex of X�. (Theorem 1.2.20

and Proposition 1.3.11.) Choose a positive integer N such that B ⊆ IN ; we claim that

Im = Lm(IN ) for all m ≥ N . Let f ∈ Im, f 6= 0. By the equivalence of (1) and (3)

in Lemma 1.3.10 we have f ∗−→
B

0. Hence by Lemma 1.3.8 there are g1, . . . , gn ∈ B,

h1, . . . , hn ∈ R, as well as σ1, . . . , σn ∈ S∞, such that

f = h1σ1g1 + · · ·+ hnσngn and lm(f) = max
i

lm(hiσigi).

By Remark 1.3.9 we may assume that in fact σi ∈ Sm for each i. Moreover lm(hi) ≤lex

lm(f), hence | lm(hi)| ≤ | lm(f)| ≤ m, for each i. Therefore hi ∈ Rm for each i. This

shows that f ∈ Lm(B) ⊆ Lm(IN ) as desired.

1.5 A Chemistry Motivation

We can now discuss the details of the basic problem that is of interest to us. It was

brought to our attention by Bernd Sturmfels, who, in turn, learned about it from Andreas

Dress.
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Fix a natural number k ≥ 1. Given a set S we denote by 〈S〉k the set of all

ordered k-element subsets of S, that is, 〈S〉k is the set of all k-tuples u = (u1, . . . , uk) ∈
Sk with pairwise distinct u1, . . . , uk. We also just write 〈n〉k instead of 〈{1, . . . , n}〉k.
Let K be a field, and for n ≥ k consider the polynomial ring

Rn = K
[
{xu}u∈〈n〉k

]
.

We let Sn act on 〈n〉k by

σ(u1, . . . , uk) =
(
σ(u1), . . . , σ(uk)

)
.

This induces an action (σ, xu) 7→ σxu = xσu of Sn on the indeterminates xu, which we

extend to an action of Sn on Rn in the natural way. We also put R =
⋃

n≥k Rn. Note

that

R = K
[
{xu}u∈〈Ω〉k

]
,

where Ω = {1, 2, 3, . . . } is the set of positive integers, and that the actions of Sn on

Rn combine uniquely to an action of S∞ on R. Let now f(y1, . . . , yk) ∈ K[y1, . . . , yk],

let t1, t2, . . . be an infinite sequence of pairwise distinct indeterminates over K, and for

n ≥ k consider the K-algebra homomorphism

φn : Rn → K[t1, . . . , tn], x(u1,...,uk) 7→ f(tu1 , . . . , tuk
).

The ideal

Qn = ker φn

of Rn determined by such a map is the prime ideal of algebraic relations between the

quantities f(tu1 , . . . , tuk
). Such ideals arise in chemistry [44, 54, 55]; of specific interest

there is when f is a Vandermonde polynomial
∏

i<j(yi − yj). In this case, the ideals Qn

correspond to relations among a series of experimental measurements. One would then

like to understand the limiting behavior of such relations, and in particular, to see that

they stabilize up to the action of the symmetric group.

Example 1.5.1. The permutation σ = (1 2 3) ∈ S3 acts on the elements

(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)
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of 〈3〉2 to give

(2, 3), (3, 2), (2, 1), (1, 2), (3, 1), (1, 3),

respectively. Let f(t1, t2) = t21t2. Then the action of σ on the valid relation x2
12x31 −

x2
13x21 ∈ Q3 gives us another relation x2

23x12 − x2
21x32 ∈ Q3.

It is easy to see that by construction, the chain Q◦ of ideals

Qk ⊆ Qk+1 ⊆ · · · ⊆ Qn ⊆ · · ·

(which we call the chain of ideals induced by the polynomial f) is an invariant chain.

As in the proof of Theorem 1.4.7, we would like to form the ideal Q =
⋃

n≥k Qn of the

infinite-dimensional polynomial ring R =
⋃

n≥k Rn, and then apply a finiteness theorem

to conclude that Q◦ stabilizes in the sense mentioned above (Definition 1.4.5). For k = 1,

Theorem 1.4.7 indeed does the job. Unfortunately however, this simple-minded approach

fails for k ≥ 2:

Proposition 1.5.2. For k ≥ 2, the R[S∞]-module R is not Noetherian.

Proof. Let us make the dependence on k explicit and denote R by R(k). Then

x(u1,...,uk,uk+1) 7→ x(u1,...,uk)

defines a surjective K-algebra homomomorphism πk : R(k+1) → R(k) with invariant ker-

nel. Hence if R(k+1) is Noetherian as an R[S∞]-module, then so is R(k); thus it suffices to

prove the proposition in the case k = 2. Suppose therefore that k = 2. By Lemma 1.3.13

it is enough to produce an infinite bad sequence for the quasi-ordering |S∞ of X�, where

X = {xi : i ∈ 〈Ω〉2}. For this, consider the sequence of monomials

s3 = x(1,2)x(3,2)x(3,4)

s4 = x(1,2)x(3,2)x(4,3)x(4,5)

s5 = x(1,2)x(3,2)x(4,3)x(5,4)x(6,7)

...

sn = x(1,2)x(3,2)x(4,3) · · ·x(n,n−1)x(n,n+1) (n = 3, 4, . . . )

...
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Now for n < m and any σ ∈ S∞, the monomial σsn does not divide sm. To see

this, suppose otherwise. Note that x(1,2), x(3,2) is the only pair of indeterminates which

divides sn or sm and has the form x(i,j), x(l,j) (i, j, l ∈ Ω). Therefore σ(2) = 2, and

either σ(1) = 1, σ(3) = 3, or σ(1) = 3, σ(3) = 1. But since 1 does not appear as the

second component j of a factor x(i,j) of sm, we have σ(1) = 1, σ(3) = 3. Since x(4,3) is

the only indeterminate dividing sn or sm of the form x(i,3) with i ∈ Ω, we get σ(4) = 4;

since x(5,4) is the only indeterminate dividing sn or sm of the form x(i,4) with i ∈ Ω,

we get σ(5) = 5; etc. Ultimately this yields σ(i) = i for all i = 1, . . . , n. But the only

indeterminate dividing sm of the form x(n,j) with j ∈ Ω is x(n,n−1), hence the factor

σx(n,n+1) = x(n,σ(n+1)) of σsn does not divide sm. This shows that s3, s4, . . . is a bad

sequence for the quasi-ordering |S∞ , as claimed.

Remark 1.5.3. The construction of the infinite bad sequence s3, s4, . . . in the proof of

the previous proposition was inspired by an example in [36].

1.5.1 A criterion for stabilization

Our next goal is to give a condition for the chain Q◦ to stabilize. Given g ∈ R, we define

the variable size of g to be the number of distinct indeterminates xu that appear in g.

For example, g = x5
12 + x45x23 + x45 has variable size 3.

Lemma 1.5.4. A chain of ideals Q◦ induced by a polynomial f ∈ K[y1, . . . , yk] stabilizes

modulo the symmetric group if and only if there exist integers M and N such that for

all n > N , there are generators for Qn with variable sizes at most M . Moreover, in this

case a bound for stabilization is given by max(N, kM).

Proof. SupposeM and N are integers with the stated property. To see that Q◦ stabilizes,

since Q◦ is an invariant chain, we need only verify that N ′ = max(N, kM) is such that

Qm ⊆ Lm(Qn) for m ≥ n > N ′. For this inclusion, it suffices that each generator in a

generating set for the ideal Qm of Rm is in Lm(Qn). Since m > N , there are generators

B for Qm with variable sizes at most M . If g ∈ B, then there are at most kM different

integers appearing as subscripts of indeterminates in g. We can form a permutation

σ ∈ Sm such that σg ∈ RN ′ and thus in Rn. But then σg ∈ Pn(Qm) ⊆ Qn so that

g = σ−1σg ∈ Lm(Qn) as desired.
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Conversely, suppose that Q◦ stabilizes. Then there exists an N such that

Qm = Lm(QN ) for all m > N . Let B be any finite generating set for QN . Then

for all m > N , Qm = Lm(B) is generated by elements of bounded variable size, by

Lemma 1.4.2.

Although this condition is a very simple one, it will prove useful. Below we

will apply it together with a preliminary reduction to the case that each indeterminate

y1, . . . , yk actually occurs in the polynomial f , which we explain next. For this we let

πk : R(k+1) → R(k) be the surjective K-algebra homomorphism defined in the proof of

Proposition 1.5.2. We write Q(k) for Q, and considering f ∈ K[y1, . . . , yk] as an element

of K[y1, . . . , yk, yk+1], we also let Q(k+1) be the kernel of the K-algebra homomorphsm

R(k+1) → K[t1, t2, . . .], x(u1,...,uk,uk+1) 7→ f(tu1 , . . . , tuk
, tuk+1

)

(= f(tu1 , . . . , tuk
)).

Note that πk(Q(k+1)) = Q(k), and the ideal kerπk of R(k+1) is generated by the elements

x(u1,...,uk,i) − x(u1,...,uk,j) (i, j ∈ Ω),

in particular kerπk ⊆ Q(k+1). It is easy to see that as an R(k+1)[S∞]-module, kerπk is

generated by the single element x(1,...,k,k+1)−x(1,...,k,k+2). These observations now yield:

Lemma 1.5.5. Suppose that the invariant ideal Q(k) of R(k) is finitely generated as an

R(k)[S∞]-module. Then the invariant ideal Q(k+1) of R(k+1) is finitely generated as an

R(k+1)[S∞]-module.

We let Sk act on 〈Ω〉k by

τ(u1, . . . , uk) = (uτ(1), . . . , uτ(k)) for τ ∈ Sk, (u1, . . . , uk) ∈ 〈Ω〉k.

This action gives rise to an action of Sk on {xu}u∈〈Ω〉k by τxu = xτu, which we extend

to an action of Sk on R in the natural way. We also let Sk act on K[y1, . . . , yk] by

τf(y1, . . . , yk) = f(yτ(1), . . . , yτ(k)). Note that

τQk ⊆ τQk+1 ⊆ · · · ⊆ τQn ⊆ · · ·

is the chain induced by τf . Using the lemma above we obtain:
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Corollary 1.5.6. Let f ∈ K[y1, . . . , yk]. There are i ∈ {0, . . . , k} and τ ∈ Sk such that

τf ∈ K[y1, . . . , yi] and each of the indeterminates y1, . . . , yi occurs in τf . If the chain of

ideals induced by the polynomial τf stabilizes, then so does the chain of ideals induced

by f .

1.5.2 Chains induced by monomials

If the given polynomial f is a monomial, then the homomorphism φn from above produces

a (homogeneous) toric kernel Qn. In particular, there is a finite set of binomials that

generate Qn (see [64]). Although a proof for the general toric case eludes us, we do have

the following.

Theorem 1.5.7. Let f ∈ K[y1, . . . , yk] be a square-free monomial. Then, the sequence

of kernels induced by f stabilizes modulo the symmetric group. Moreover, a bound for

when stabilization occurs is N = 4k.

To prepare for the proof of this result, we discuss in detail the toric encoding

associated to our problem (see [64, Chapter 14] for more details). By Corollary 1.5.6,

we may assume that f = y1 · · · yk. Then g − τg ∈ Q for all g ∈ R. We say that

u = (u1, . . . , uk) ∈ 〈Ω〉k is sorted if u1 < · · · < uk, and unsorted otherwise; similarly

we say that xu is sorted (unsorted) if u is sorted (unsorted, respectively). For example,

x135 is a sorted indeterminate, whereas x315 is not. Consider the set of vectors

An =
{
(i1, . . . , in) ∈ Zn : i1 + · · ·+ in = k, 0 ≤ i1, . . . , in ≤ 1

}
.

View An as an n-by-
(
n
k

)
matrix entries with 0 and 1, whose with columns are indexed by

sorted indeterminates xu and whose rows are indexed by ti (i = 1, . . . , n). (See Example

1.5.9 below.) Let sort( · ) denote the operator which takes any word in {1, . . . , n}∗ and

sorts it in increasing order. By [64, Remark 14.1], the toric ideal IAn associated to An

is generated (as K-vector space) by the binomials xu1 · · ·xur − xv1 · · ·xvr , where r ∈ N
and the ui, vj are sorted elements of 〈n〉k such that sort(u1 · · ·ur) = sort(v1 · · ·vr). In

particular, we have IAn ⊆ Qn. Let B be any set of generators for the ideal IAn .

Lemma 1.5.8. A generating set for the ideal Qn of Rn is given by

S = B ∪ {xu − xτu : τ ∈ Sk, u is sorted}.
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Proof. Elements of Qn are of the form g = xu1 · · ·xur − xv1 · · ·xvr , in which the ui and

vj are ordered k-element subsets of {1, . . . , n} such that sort(u1 · · ·ur) = sort(v1 · · ·vr).

We induct on the number t of ui and vj that are not sorted. If t = 0, then g ∈ IAn ,

and we are done. Suppose now that t > 0 and assume without loss of generality that

u1 is not sorted. Let τ ∈ Sk be such that τu1 is sorted, and consider the element h =

xτu1xu2 · · ·xur −xv1 · · ·xvr of Qn. This binomial involves t−1 unsorted indeterminates,

and therefore, inductively, can be expressed in terms of S. But then

g = h− (xτu1 − xu1)xu2 · · ·xur

can as well, completing the proof.

Example 1.5.9. Let k = 2 and n = 4. Then

x12 x13 x14 x23 x24 x34

t1 1 1 1 0 0 0

t2 1 0 0 1 1 0

t3 0 1 0 1 0 1

t4 0 0 1 0 1 1

represents the matrix associated to A4. The ideal IA4 is generated by the two binomials

x13x24−x12x34 and x14x23−x12x34. Hence Q4 is generated by these two elements along

with

{x12 − x21, x13 − x31, x14 − x41, x23 − x32, x24 − x42, x34 − x43}.

We are now in a position to prove Theorem 1.5.7.

Proof of Theorem 1.5.7. By Lemma 1.5.4, we need only show that there exist generators

for Qn which have bounded variable sizes. Using [64, Theorem 14.2], it follows that IAn

has a quadratic (binomial) Gröbner basis for each n (with respect to some term ordering

of Rn). By Lemma 1.5.8, there is a set of generators for Qn with variable sizes at most

4. This proves the theorem.

We close this chapter with a conjecture that generalizes Theorem 1.5.7.

Conjecture 1.5.10. The sequence of kernels induced by a monomial f stabilizes modulo

the symmetric group.
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Chapter 2

Cyclic Resultants

2.1 Introduction

The m-th cyclic resultant of a univariate polynomial f ∈ C[x] is

rm = Res(f, xm − 1).

We are primarily interested here in the fibers of the map r : C[x] → CN given by

f 7→ (rm)∞m=0. In particular, what are the conditions for two polynomials to give rise to

the same set of cyclic resultants? For technical reasons, we will only consider polynomials

f that do not have a root of unity as a zero. With this restriction, a polynomial will

map to a set of all nonzero cyclic resultants. Our main result gives a complete answer

to this question.

Theorem 2.1.1. Let f and g be polynomials in C[x]. Then, f and g generate the same

sequence of nonzero cyclic resultants if and only if there exist u, v ∈ C[x] with u(0) 6= 0

and nonnegative integers l1, l2 such that deg(u) ≡ l2 − l1 (mod 2), and

f(x) = (−1)l2−l1xl1v(x)u(x−1)xdeg(u)

g(x) = xl2v(x)u(x).

Remark 2.1.2. All our results involving C hold over any algebraically closed field of

characteristic zero.
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Although the theorem statement appears somewhat technical, we present a

natural interpretation of the result. Suppose that g(x) = xl2v(x)u(x) is a factorization

as above of a polynomial g with nonzero cyclic resultants. Then, another polynomial f

giving rise to this same sequence of resultants is obtained from v by multiplication with

the reversal u(x−1)xdeg(u) of u and a factor (−1)deg(u)xl1 in which l1 ≡ l2−deg(u) (mod 2).

In other words, f(x) = (−1)deg(u)xl1v(x)u(x−1)xdeg(u), and all such f must arise in this

manner.

Example 2.1.3. One can check that the polynomials

f(x) = x3 − 10x2 + 31x− 30

g(x) = 15x5 − 38x4 + 17x3 − 2x2

both generate the same cyclic resultants. This follows from the factorizations

f(x) = (x− 2)
(
15x2 − 8x+ 1

)
g(x) = x2(x− 2)

(
x2 − 8x+ 15

)
.

One motivation for the study of cyclic resultants comes from the theory of

dynamical systems. Sequences of the form rm arise as the cardinalities of sets of periodic

points for toral endomorphisms. Let A be a d×d integer matrix and let X = Td = Rd/Zd

denote the d-dimensional additive torus. Then, the matrix A acts on X by multiplication

mod 1; that is, it defines a map T : X → X given by

T (x) = Ax mod Zd.

Let Perm(T ) = {x ∈ Td : Tm(x) = x} be the set of points fixed under the map Tm.

Under the ergodicity condition that no eigenvalue of A is a root of unity, it follows (see

[14]) that

|rm(f)| = |Perm(T )| = |det(Am − I)|,

in which I is the d× d identity matrix, and f is the characteristic polynomial of A. As

a consequence of our results, we characterize when the sequence |Perm(T )| determines

the spectrum of the linear map A lifting T (see Corollary 2.1.13).

In connection with number theory, cyclic resultants were also studied by Pierce

and Lehmer [14] in the hope of using them to produce large primes. As a simple ex-

ample, the Mersenne numbers Mm = 2m − 1 arise as cyclic resultants of the polynomial
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f(x) = x − 2. Indeed, the map T (x) = 2x mod 1 has precisely Mm points of period

m. Further motivation comes from knot theory [63], Lagrangian mechanics [20, 35], and,

more recently, in the study of amoebas of varieties [52] and quantum computing [37].

The principal result in the direction of our main characterization theorem was

discovered by Fried [17] although certain implications of Fried’s result were known to

Stark [11]. Given a polynomial f = a0x
d +a1x

d−1 + · · ·+ad of degree d, the reversal of f

is the polynomial xdf(1/x). Additionally, f is called reciprocal if ai = ad−i for 0 ≤ i ≤ d

(sometimes such a polynomial is called palindromic). Alternatively, f is reciprocal if it

is equal to its own reversal. Fried’s result may be stated as follows. It will be a corollary

of Theorem 2.1.8 below (the real version of Theorem 2.1.1).

Corollary 2.1.4 (Fried). Let p(x) = a0x
d + · · ·+ ad−1x+ ad ∈ R[x] be a real reciprocal

polynomial of even degree d with a0 > 0, and let rm be the m-th cyclic resultants of p.

Then, |rm| uniquely determine this polynomial of degree d as long as the rm are never 0.

The following is a direct corollary of our main theorem to the generic case.

Corollary 2.1.5. Let g be a generic polynomial in C[x] of degree d. Then, there are

exactly 2d−1 degree d polynomials with the same set of cyclic resultants as g.

Proof. If g is generic, then g will not have a root of unity as a zero nor will g(0) = 0.

Theorem 2.1.1, therefore, implies that any other degree d polynomial f ∈ C[x] giving rise

to the same set of cyclic resultants is determined by choosing an even cardinality subset

of the roots of g. Such polynomials will be distinct since g is generic. Since there are 2d

subsets of the roots of g and half of them have even cardinality, the theorem follows.

Example 2.1.6. Let g(x) = (x− 2)(x− 3)(x− 5) = x3 − 10x2 + 31x− 30. Then, there

are 23−1 − 1 = 3 other degree 3 polynomials with the same set of cyclic resultants as g.

They are:

15x3 − 38x2 + 17x− 2

10x3 − 37x2 + 22x− 3

6x3 − 35x2 + 26x− 5.
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If one is interested in the case of generic monic polynomials, then Theorem

2.1.1 also implies the following uniqueness result.

Corollary 2.1.7. The set of cyclic resultants determines g for generic monic g ∈ C[x]

of degree d.

Proof. Again, since g is generic, it will not have a root of unity as a zero nor will

g(0) = 0. Theorem 2.1.1 forces a constraint on the roots of g for there to be a different

monic polynomial f with the same set of cyclic resultants as g. Namely, a subset of the

roots of g has product 1, a non-generic situation.

As to be expected, there are analogs of Theorem 2.1.1 and Corollary 2.1.7 to

the real case involving absolute values.

Theorem 2.1.8. Let f and g be polynomials in R[x]. If f and g generate the same

sequence of nonzero cyclic resultant absolute values, then there exist u, v ∈ C[x] with

u(0) 6= 0 and nonnegative integers l1, l2 such that

f(x) = ± xl1v(x)u(x−1)xdeg(u)

g(x) = xl2v(x)u(x).

Corollary 2.1.9. The set of cyclic resultant absolute values determines g for generic

monic g ∈ R[x] of degree d.

The generic real case without the monic assumption is more subtle than that of

Corollary 2.1.5. The difficulty is that we are restricted to polynomials in R[x]. However,

there is the following

Corollary 2.1.10. Let g be a generic polynomial in the set of degree d elements of R[x]

with at most one real root. Then there are exactly 2dd/2e+1 degree d polynomials in R[x]

with the same set of cyclic resultant absolute values as g.

Proof. If d is even, then the hypothesis implies that all of the roots of g are nonreal.

In particular, it follows from Theorem 2.1.8 (and genericity) that any other degree d

polynomial f ∈ R[x] giving rise to the same set of cyclic resultant absolute values is

determined by choosing a subset of the d/2 pairs of conjugate roots of g and a sign. This
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gives us a count of 2d/2+1 distinct real polynomials. When d is odd, g has exactly one

real root, and a similar counting argument gives us 2dd/2e+1 for the number of distinct

real polynomials in this case. This proves the corollary.

A surprising consequence of this result is that the number of polynomials with

equal sets of cyclic resultant absolute values can be significantly smaller than the number

predicted by Corollary 2.1.5.

Example 2.1.11. Let g(x) = (x− 2)(x+ i+ 2)(x− i+ 2) = x3 + 2x2− 3x− 10. Then,

there are 2d3/2e+1 − 1 = 7 other degree 3 real polynomials with the same set of cyclic

resultant absolute values as g. They are:

−x3 − 2x2 + 3x+ 10, ±(−2x3 − 7x2 − 6x+ 5),

±(5x3 − 6x2 − 7x− 2), ±(−10x3 − 3x2 + 2x+ 1).

It is important to realize that while

f(x) = (1− 2x)(1 + (i+ 2)x)(x− i+ 2)

= (−4− 2 i)x3 − (10− i)x2 + (2 + 2 i)x+ 2− i

has the same set of actual cyclic resultants (by Theorem 2.1.1), it does not appear in the

count above since it is not in R[x].

As an illustration of the usefulness of Theorem 2.1.1, we prove a uniqueness

result involving cyclic resultants of reciprocal polynomials. Fried’s result also follows in

the same way using Theorem 2.1.8 in place of Theorem 2.1.1.

Corollary 2.1.12. Let f and g be reciprocal polynomials with equal sets of nonzero cyclic

resultants. Then, f = g.

Proof. Let f and g be as in the statement of the corollary. Applying Theorem 2.1.1, it

follows that d = deg(f) = deg(g) and that

f(x) = v(x)u(x−1)xdeg(u)

g(x) = v(x)u(x)
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(l1 = l2 = 0 since f(0), g(0) 6= 0). But then,

u(x−1)
u(x)

xdeg(u) =
f(x)
g(x)

=
xdf(x−1)
xdg(x−1)

=
u(x)
u(x−1)

x−deg(u).

In particular, u(x) = ±u(x−1)xdeg(u). If u(x) = u(x−1)xdeg(u), then f = g as desired.

In the other case, it follows that f = −g. But then Res(f ,x − 1) = Res(g,x − 1) =

−Res(f ,x−1) is a contradiction to f having all nonzero cyclic resultants. This completes

the proof.

We now state the application to toral endomorphims discussed in the introduc-

tion.

Corollary 2.1.13. Let T be an ergodic, toral endomorphism induced by a d× d integer

matrix A. If there is no subset of the eigenvalues of A with product ±1, then the sequence

|Perm(T )| determines the spectrum of the linear map that defines T .

Proof. Suppose that T ′ is another toral endomorphism induced by an integral d × d

matrix B such that

|Perm(T )| = |Perm(T ′)|.

Let f and g be the characteristic polynomials of A and B, respectively. From the

hypothesis of the corollary and the statement of Theorem 2.1.8, it follows that f and

g must be equal. In particular, the eigenvalues of the matrices A and B coincide,

completing the proof.

Remark 2.1.14. We note that a more complete characterization is possible using the

results of Theorem 2.1.8, however, the statement is more technical and not very enlight-

ening.

When a degree d polynomial is uniquely determined by its sequence of cyclic

resultants, it is natural to ask for an algorithm that performs the reconstruction. In

several applications, moreover, explicit inversion using small numbers of resultants is
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desired (see, for instance, [35, 37]). In Section 2.5, we describe a method that inverts the

map r using the first 2d+1 cyclic resultants. Empirically, however, only d+ 1 resultants

suffice, and a conjecture by Sturmfels and Zworski would imply that this is always the

case. As evidence for this conjecture, we provide explicit reconstructions for several small

examples.

The rest of this chapter is organized as follows. In Section 2.2, we make a di-

gression into the theory of semigroup algebras and binomial factorizations. The unique

factorization result discussed there (Theorem 2.2.10) will form a crucial component in

the proof of Theorem 2.1.1. The subsequent chapter deals with algebraic properties

of cyclic resultants, and Section 2.5 concludes with proofs of our main cyclic resultant

characterization theorems. Finally, in the last section, we discuss algorithms for recon-

struction.

2.2 Binomial Factorizations

We now switch to the seemingly unrelated topic of binomial factorizations in group

algebras. The relationship to cyclic resultants will become clear later. We begin with a

very general situation. Let G be a group and let ZG be the group algebra over Z. In the

following definition (which appears to be new), we view R as a group under addition.

Definition 2.2.1. Let G be group and let S ⊂ G. The set S is called nonderogatory if

for each finitely generated subgroup H containing a subset {g1, . . . , gn} ⊂ S, there is a

group homomorphism φ : H → R such that φ(gi) 6= 0 for all i.

Obviously, not every set of group elements has this property – for instance, if

any of the elements of S have torsion. Less trivial non-examples can be found by taking

triples g, h, ghg−1h−1 of torsion-free elements in a group G. Nevertheless, nonderogatory

sets are relatively easy to find. For a simple example, consider G = GLn(C). There is a

natural homomorphism φ : G→ R given by

φ(A) = log |det(A)|. (2.2.1)

We then have the following
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Example 2.2.2. The set of elements of GLn(C) with determinants outside the unit

circle (in the complex plane) is nonderogatory.

More examples can be generated using the following lemma. Intuitively, it says

that these objects are closed under taking a conjugate closure.

Lemma 2.2.3. Let S be a nonderogatory set for a group G and let T ⊂ G. Then,

{tst−1 : t ∈ T, s ∈ S}

is a nonderogatory subset of G.

Proof. Let S be as in the lemma and let ti ∈ T, si ∈ S for i = 1, . . . , n. For a finitely

generated subgroup H that contains {t1s1t−1
1 , . . . , tnsnt

−1
n }, we must exhibit a homo-

morphism φ : H → R with φ(tisit
−1
i ) 6= 0 for all i. Consider the finitely generated

group,

H̃ = 〈h, si, ti : h ∈ H, i = 1, . . . , n〉.

Since S is nonderogatory, there is a homomorphism ψ : H̃ → R with ψ(si) 6= 0 for all i.

Clearly, H ⊆ H̃, and since ψ(tisit
−1
i ) = ψ(si), it follows that ψ restricted to H satisfies

our requirements. This completes the proof.

Later, we shall be able to give a complete characterization of nonderogatory

subsets in the Abelian case (Proposition 2.2.9). We now give the factorization motivation

for our definition.

Recall that two elements x, y ∈ G are called conjugate (denoted x ∼ y) if there

exists z ∈ G such that x = zyz−1. The following definition explains what we shall mean

by unique factorization of binomials.

Definition 2.2.4. A subset S of a group G has the unique binomial factorization prop-

erty if the existence of a factorization

a
m∏

i=1

(gi − hi) = b
n∏

i=1

(ui − vi), a, b ∈ Z, g−1
i hi, u

−1
i vi ∈ S

in ZG implies that a = ±b, m = n, and that up to permutation, for each i, there are

elements ci ∈ G such that (gi − hi) ∼ ±ci(ui − vi).
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Example 2.2.5. To illustrate the need for conjugation in the definition, consider the

identity

(u− v)(w − x)(y − z) = (uwy − vwy)(1− y−1w−1xy)(1− y−1z),

which holds in any group algebra. One can then check that

(u− v) = wy(y−1w−1)(uwy − vwy)y−1w−1

(w − x) = y(y−1wy)(1− y−1w−1xy)y−1

(y − z) = y(1− y−1z).

The main conjecture of this section would provide a sufficient condition for

unique factorizations of binomials in a group algebra.

Conjecture 2.2.6. Nonderogatory subsets of a group G have the unique binomial fac-

torization property.

The following unique factorization result would be a direct consequence of The-

orem 3.1.3.

Conjecture 2.2.7. The set of elements of GLn(C) with determinants outside the unit

circle (in the complex plane) have the unique factorization property.

We should remark that there are obstructions to unique factorization that make

necessary some kind of supplemental hypothesis. For example, when G = Z/2Z, we have

ZG ∼= Z[s]/〈s2 − 1〉, and it is easily verified that

(1− s)(1− s) = 2(1− s).

One might also wonder what happens when the binomials are not of the form g−h. The

following example exhibits some of the difficulty in formulating a general statement.

Example 2.2.8. Let G = Z⊕ Z/2Z so that ZG ∼= Z[s, t, t−1]/〈s2 − 1〉. Then,

(1− t4) = (1− t2)(1 + t2) = (1− st2)(1 + st2)

are three different binomial factorizations of the same element.
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We now proceed to give a proof of Conjecture 2.2.6 in the Abelian case, essen-

tially by giving a characterization of nonderogatory sets.

Let A be a finitely generated abelian group and let a1, . . . , an be distinguished

generators of A. Let Q be the semigroup generated by a1, . . . , an. The semigroup algebra

Z[Q] is the Z-algebra with Z-basis {sa : a ∈ Q} and multiplication defined by sa · sb =

sa+b. Let L denote the kernel of the homomorphism Zn onto A. The lattice ideal

associated with L is the following ideal in S = Z[x1, . . . , xn]:

IL = 〈xu − xv : u,v ∈ Nn with u− v ∈ L〉.

It is well-known that Z[Q] ∼= S/IL (e.g. see [46]). Our main theorems are the following.

Theorem 2.2.9. For a subset S of an Abelian group G the following are equivalent:

(1) S is nonderogatory

(2) S consists only of torsion-free elements

Theorem 2.2.10. Nonderogatory subsets of Abelian groups have the unique binomial

factorization property.

To prove our main results, we will pass to the group algebra Q[A]. As above,

we represent elements τ ∈ Q[A] as τ =
∑m

i=1 αisgi , in which αi ∈ Q and gi ∈ A. The

following lemma is quite well-known.

Lemma 2.2.11. If 0 6= α ∈ Q and g ∈ A has infinite order, then 1− αsg ∈ Q[A] is not

a zero-divisor.

Proof. Let 0 6= α ∈ Q, g ∈ A and τ =
∑m

i=1 αisgi 6= 0 be such that

τ = αsgτ = α2s2gτ = α3s3gτ = · · · .

Suppose that α1 6= 0. Then, the elements sg1 , sg1+g, sg1+2g, . . . appear in τ with nonzero

coefficient, and since g has infinite order, these elements are all distinct. It follows,

therefore, that τ cannot be a finite sum, and this contradiction finishes the proof.

Since the proof of the main theorem involves multiple steps, we record several

facts that will be useful later. The first result is a verification of the factorization theorem

for a special case.
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Lemma 2.2.12. Fix an abelian group C. Let Q[C] be the group algebra with Q-basis

given by {sc : c ∈ C} and set R = Q[C][t, t−1]. Suppose that ci, di, b ∈ C, mi, ni are

nonzero integers, q ∈ Z, and z ∈ Q are such that

e∏
i=1

(1− scitmi) = zsbtq
f∏

i=1

(1− sditni)

holds in R. Then, e = f and after a permutation, for each i, either scitmi = sditni or

scitmi = s−dit−ni.

Proof. Let sgn : Z \{0} → {−1, 1} denote the standard sign map sgn(n) = n/|n| and set

γ = zsbtq. Rewrite the left-hand side of the given equality as:

e∏
i=1

(1− scitmi) =
∏

sgn(mi)=−1

−scitmi

e∏
i=1

(
1− ssgn(mi)cit|mi|

)
.

Similarly for the right-hand side, we have:

f∏
i=1

(
1− sditni

)
=

∏
sgn(ni)=−1

−sditni

f∏
i=1

(
1− ssgn(ni)dit|ni|

)
.

Next, set

η = γ
∏

sgn(mi)=−1

−s−cit−mi
∏

sgn(ni)=−1

−sditni

so that our original equation may be written as

e∏
i=1

(
1− ssgn(mi)cit|mi|

)
= η

f∏
i=1

(
1− ssgn(ni)dit|ni|

)
.

Comparing the lowest degree term (with respect to t) on both sides, it follows that η = 1.

It is enough, therefore, to prove the claim in the case when

e∏
i=1

(1− scitmi) =
f∏

i=1

(
1− sditni

)
(2.2.2)

and the mi, ni are positive. Without loss of generality, suppose the lowest degree non-

constant term on both sides of (2.2.2) is tm1 with coefficient −sc1 − · · · − scu on the left

and −sd1 − · · · − sdv on the right. Here, u (resp. v) corresponds to the number of mi

(resp. ni) with mi = m1 (resp. ni = m1).
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Since the set of distinct monomials {sc : c ∈ C} is a Q-basis for the ring Q[C],

equality of the tm1 coefficients above implies that u = v and that up to permutation,

scj = sdj for j = 1, . . . , u. Lemma 2.2.11 and induction complete the proof.

Lemma 2.2.13. Let P = (pij) be a d×n integer matrix such that every row has at least

one nonzero integer. Then, there exists v ∈ Zn such that the vector Pv does not contain

a zero entry.

Proof. Let P be a d×n integer matrix as in the hypothesis of the lemma, and for h ∈ Z,

let vh = (1, h, h2, . . . , hn−1)T . Assume, by way of contradiction, that Pv contains a

zero entry for all v ∈ Zn. Then, in particular, this is true for all vh as above. By the

(infinite) pigeon-hole principle, there exists an infinite set of h ∈ Z such that (without

loss of generality) the first entry of Pvh is zero. But then,

f(h) :=
n∑

i=1

p1ih
i−1 = 0

for infinitely many values of h. It follows, therefore, that f(h) is the zero polynomial,

contradicting our hypothesis and completing the proof.

Lemma 2.2.13 will be useful in verifying the following fact.

Lemma 2.2.14. Let A be a finitely generated abelian group and a1, . . . , ad elements in

A of infinite order. Then, there exists a homomorphism φ : A → Z such that φ(ai) 6= 0

for all i.

Proof. Write A = B ⊕ C, in which C is a finite group and B is free of rank n. If n = 0,

then there are no elements of infinite order; therefore, we may assume that the rank of

B is positive. Since a1, . . . , ad have infinite order, their images in the natural projection

π : A→ B are nonzero. It follows that we may assume that A is free and ai are nonzero

elements of A.

Let e1, . . . , en be a basis for A, and write

at = pt1e1 + · · ·+ ptnen
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for (unique) integers pij ∈ Z. To determine a homomorphism φ : A→ Z as in the lemma,

we must find integers φ(e1), . . . , φ(en) such that

0 6= p11φ(e1) + · · ·+ p1nφ(en)

· · · · · · · · · · · · · · · · · · · · · · · ·

0 6= pd1φ(e1) + · · ·+ pdnφ(en).

(2.2.3)

This, of course, is precisely the consequence of Lemma 2.2.13 applied to the matrix

P = (pij), finishing the proof.

Recall that a trivial unit in the group ring Q[A] is an element of the form αsa

in which 0 6= α ∈ Q and a ∈ A. The main content of Theorem 2.2.9 is contained in the

following result. The technique of embedding Q[A] into a Laurent polynomial ring is also

used by Fried in [17].

Lemma 2.2.15. Let A be an abelian group. Two factorizations in Q[A],

e∏
i=1

(1− sgi) = η

f∏
i=1

(
1− shi

)
,

in which η is a trivial unit and gi, hi ∈ A all have infinite order are equal if and only if

e = f and there is some nonnegative integer p such that, up to permutation,

(1) gi = hi for i = 1, . . . , p

(2) gi = −hi for i = p+ 1, . . . , e

(3) η = (−1)e−psgp+1+···+ge.

Proof. The if-direction of the claim is a straightforward calculation. Therefore, suppose

that one has two factorizations as in the lemma. It is clear we may assume that A is

finitely generated. By Lemma 2.2.14, there exists a homomorphism φ : A → Z such

that φ(gi), φ(hi) 6= 0 for all i. The ring Q[A] may be embedded into the Laurent ring,

R = Q[A][t, t−1], by way of

ψ

(
m∑

i=1

αisai

)
=

m∑
i=1

αisaitφ(ai).
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Write η = αsb. Then, applying this homomorphism to the original factorization, we have

e∏
i=1

(
1− sgitφ(gi)

)
= αsbtφ(b)

f∏
i=1

(
1− shitφ(hi)

)
.

Lemma 2.2.12 now applies to give us that e = f and there is an integer p such that up

to permutation,

(1) gi = hi for i = 1, . . . , p

(2) gi = −hi for i = p+ 1, . . . , e.

We are therefore left with verifying statement (3) of the lemma. Using Lemma 2.2.11,

we may cancel equal terms in our original factorization, leaving us with the following

equation:
e∏

i=p+1

(1− sgi) = η

e∏
i=p+1

(1− s−gi)

= η(−1)e−p
e∏

i=p+1

s−gi

e∏
i=p+1

(1− sgi).

Finally, one more application of Lemma 2.2.11 gives us that η = (−1)e−psgp+1+···+ge as

desired. This finishes the proof.

Our main theorems are now immediate from what we have done.

Proof of Theorem 2.2.9. (1) ⇒ (2) is clear from the definition and (2) ⇒ (1) follows

directly from Lemma 2.2.14.

Proof of Theorem 2.2.10. Suppose that

sa
e∏

i=1

(sui − svi) = αsb
f∏

i=1

(sxi − syi)

are two factorizations in the ring Q[A]. Factor each element of the form (su − sv) as

su (1− sv−u). By assumption and Theorem 2.2.9, each such v − u has infinite order.

Now, apply Lemma 2.2.15, giving us that α = ±1, e = f , and that after a permutation,

for each i either svi−ui = syi−xi or svi−ui = sxi−yi . It easily follows from this that for

each i, there are elements ci ∈ A such that (sui − svi) = ±sci(sxi − syi). This completes

the proof of the theorem.
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Finally, to close this section, we offer the following open problem.

Conjecture 2.2.16. The torsion-free elements of an arbitrary group have the unique

binomial factorization property.

2.3 Cyclic Resultants and Rational Functions

We begin with some preliminaries concerning cyclic resultants. Let f(x) = a0x
d +

a1x
d−1 + · · ·+ ad be a degree d polynomial over C, and let the companion matrix for f

be given by:

A =



0 0 · · · 0 −ad/a0

1 0 · · · 0 −ad−1/a0

0 1 · · · 0 −ad−2/a0

0
...

. . .
...

...

0 0 · · · 1 −a1/a0


.

Also, let I denote the d× d identity matrix. Then, we may write [8, p. 77]

rm = am
0 det (Am − I) . (2.3.1)

This equation can also be expressed as,

rm = am
0

d∏
i=1

(αm
i − 1), (2.3.2)

in which α1, . . . , αd are the roots of f(x).

Let ei(y1, . . . , yd) be the i-th elementary symmetric function in the variables

y1, . . . , yd (we set e0 = 1). Then, we know that ai = (−1)ia0ei(α1, . . . , αd) and that

rm = am
0

d∑
i=0

(−1)ied−i (αm
1 , . . . , α

m
d ). (2.3.3)

We first record an auxiliary result.

Lemma 2.3.1. Let Fk(z) =
∏

1≤i1<···<ik≤d

(1− a0αi1 · · ·αikz) with F0(z) = 1−a0z. Then,

∞∑
m=1

am
0 ek (αm

1 , . . . , α
m
d ) zm = −z ·

F ′
k

Fk
,

in which F ′
k denotes dFk

dz .
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Proof. For k = 0, the equation is easily verified. When k > 0, the calculation is still

fairly straightforward:

∞∑
m=1

am
0 ek (αm

1 , . . . , α
m
d ) zm =

∞∑
m=1

∑
i1<···<ik

am
0 α

m
i1 · · ·α

m
ik
· zm

=
∑

i1<···<ik

∞∑
m=1

am
0 α

m
i1 · · ·α

m
ik
· zm

=
∑

i1<···<ik

a0αi1 · · ·αikz

1− a0αi1 · · ·αikz

=

−z · d
dz

[ ∏
i1<···<ik

(1− a0αi1 · · ·αikz)

]
∏

i1<···<ik

(1− a0αi1 · · ·αikz)

= −z ·
F ′

k

Fk
.

We are now ready to state and prove a rationality result for cyclic resultants.

Lemma 2.3.2. Rf (z) =
∑∞

m=1 rmz
m is a rational function in z.

Proof. We simply compute that

∞∑
m=1

rmz
m =

∞∑
m=1

d∑
i=0

(−1)iam
0 ed−i (αm

1 , . . . , α
m
d ) · zm

=
d∑

i=0

(−1)i
∞∑

m=1

am
0 ed−i (αm

1 , . . . , α
m
d ) · zm

= −z ·
d∑

i=0

(−1)i ·
F ′

d−i

Fd−i
.

Manipulating the expression for Rf (z) occurring in Lemma 2.3.2, we also have

the following fact.
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Corollary 2.3.3. If d is even, let Gd = FdFd−2···F0

Fd−1Fd−3···F1
and if d is odd, let Gd = FdFd−2···F1

Fd−1Fd−3···F0
.

Then,
∞∑

m=1

rmz
m = −z

G′
d

Gd
.

In particular, it follows that

exp

(
−

∞∑
m=1

rm
zm

m

)
= Gd. (2.3.4)

Example 2.3.4. Let f(x) = x2− 5x+ 6 = (x− 2)(x− 3). Then, rm = (2m− 1)(3m− 1)

and F0(z) = 1− z, F1(z) = (1− 2z)(1− 3z), F2(z) = 1− 6z. Thus,

Rf (z) = −z
(
F ′

2

F2
− F ′

1

F1
+
F ′

0

F0

)
=

6z
1− 6z

− 2z
1− 2z

− 3z
1− 3z

+
z

1− z

and

exp

(
−

∞∑
m=1

rm
zm

m

)
=

(1− 6z)(1− z)
(1− 2z)(1− 3z)

.

Following [17], we discuss how to deal with absolute values in the real case. Let

f ∈ R[x] have degree d such that the rm as defined above are all nonzero. We examine

the sign of rm using equation (2.3.2). First notice that a complex conjugate pair of roots

of f does not affect the sign of rm. A real root α of f contributes a sign factor of +1

if α > 1, −1 if −1 < α < 1, and (−1)m if α < −1. Let E be the number of zeroes of

f in (−1, 1) and let D be the number of zeroes in (−∞,−1). Also, set ε = (−1)E and

δ = (−1)D. Then, it follows that

rm
|rm|

= ε · δm. (2.3.5)

In particular,

|rm| = ε(δa0)m
d∏

i=1

(αm
i − 1). (2.3.6)

In other words, the sequence of |rm| is obtained by multiplying each cyclic resultant of

the polynomial f̃ := δf = δa0x
d + δa1x

d−1 + · · ·+ δad by ε. Denoting by G̃d the rational

function determined by f̃ as in (2.3.3), it follows that

exp

(
−

∞∑
m=1

|rm|
zm

m

)
=
(
G̃d

)ε
. (2.3.7)
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2.4 Proofs of the Main Theorems

In this section, we discuss how the problem of binomial factorization arises in a natural

way from the study of cyclic resultants. Let S denote the ring of sequences over C under

pointwise sum and product, and for µ ∈ C, let e(µ) denote the exponential sequence

e(µ)n = µn (n ≥ 1). With this identification, the infinite number of expressions (2.3.2)

(similarly for (2.3.6)) can be represented succinctly by

e(a0)
d∏

i=1

(e(αi)− 1) ∈ S. (2.4.1)

Let G = C∗ be the multiplicative group generated by nonzero elements of C. Because of

the multiplicative structure of G, we represent Z-basis elements of the group ring Z[G]

as [µ], µ ∈ G; multiplication is given by [µ] · [ν] = [µν]. The map e : Z[G] → S sending

[µ] 7→ e(µ) (and extended by linearity) is an embedding of Z-algebras, as the following

lemma shows.

Lemma 2.4.1. The map e : Z[G] → S sending [µ] 7→ e(µ) is an injective homomor-

phism.

Proof. Since e(µ)e(ν) = e(µν), the map e is an algebra homomorphism. Injectivity

follows since the exponential sequences e(µ1), . . ., e(µm) are linearly independent for

distinct µi ∈ G (the determinant |e(µi)j |mi,j=1 is Vandermonde).

From these remarks, it follows that determining when two polynomials produce

equal sequences of cyclic resultants reduces to solving a problem in binomial factorization.

We are now ready to complete the proofs of our main characterization theorems for cyclic

resultants.

Proof of Theorem 2.1.1. Let f and g be polynomials as in the hypothesis, and suppose

that the multiplicity of 0 as a root of f (resp. g) is l1 (resp. l2). Then, f(x) =

xl1(a0x
d1 + · · ·+ ad1) and g(x) = xl2(b0xd2 + · · ·+ bd2) in which a0 and b0 are not 0. Let

α1, . . . , αd1 and β1, . . . , βd2 be the nonzero roots of f and g, respectively, and let G be

the multiplicative group generated by these elements along with a0, b0. Since f and g
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both generate the same sequence of cyclic resultants, it follows from (2.4.1) and Lemma

2.4.1 that we have an equality of factorizations

(−1)d1+l1 [a0]
d1∏
i=1

(1− [αi]) = (−1)d2+l2 [b0]
d2∏
i=1

(1− [βi]).

Since we have assumed that f and g generate a set of nonzero cyclic resultants,

neither of them can have a root of unity as a zero. Therefore, Lemma 2.2.15 applies to

give us that d := d1 = d2 and that up to a permutation, there is a nonnegative integer

p such that

(1) αi = βi for i = 1, . . . , p

(2) αi = β−1
i for i = p+ 1, . . . , d

(3) (−1)d−p = (−1)l2−l1 , a0b
−1
0 = βp+1 · · ·βd.

Set u(x) = (x − βp+1) · · · (x − βd) which has deg(u) ≡ l2 − l1 (mod 2), and let v(x) =

b0(x − β1) · · · (x − βp) (note that if p = 0, then v(x) = b0) so that g(x) = xl2v(x)u(x).

Now,

u(x−1)xdeg(u) = (−1)d−pβp+1 · · ·βd(x− β−1
p+1) · · · (x− β−1

d ),

and thus

f(x) = xl1a0b
−1
0 v(x)(x− β−1

p+1) · · · (x− β−1
d )

= (−1)l2−l1xl1v(x)u(x−1)xdeg(u).

Finally, the converse is straightforward from (2.3.2), completing the proof of the theorem.

The proof of Theorem 2.1.8 is similar, employing equation (2.3.6) in place of

(2.3.2).

Proof of Theorem 2.1.8. Since multiplication of a real polynomial by a power of x does

not change the absolute value of a cyclic resultant, we may assume f, g ∈ R[x] have

nonzero roots. The result now follows from (2.3.6) and the argument used to prove the

if-direction of Theorem 2.1.1.
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2.5 Reconstructing Dynamical Systems From Their Zeta

Functions

In the final section of this chapter, we describe how to explicitly reconstruct a polynomial

from its cyclic resultants. For an ergodic toral endomorphism as in the introduction, the

sequence |rm| encodes the cardinalities of sets of periodic points. In particular, fixing

the zeta function,

Z(T, z) = exp

(
−

∞∑
m=1

|Perm(T )|z
m

m

)
,

of the dynamical system in question is another way of writing equation (2.3.7).

In many of the applications [11, 35, 37, 63], the defining polynomial is reciprocal,

and the techniques discussed here restrict easily to this special case. Furthermore, since

reciprocal polynomials are uniquely determined without any genericity assumptions (see

Corollary 2.1.4 and Corollary 2.1.12), the computational organization is simpler.

Let f(x) = a0x
d+a1x

d−1+· · ·+ad be a degree d polynomial with indeterminate

coefficients ai. We distinguish between two cases. In the first situation, the variable a0

is replaced by 1 so that f is monic; while in the second, we set ai = ad−i for i = 1, . . . , d

so that f is reciprocal.

Although the results mentioned in this paper only imply that the full sequence

of cyclic resultants determine f when it is (generic) monic or reciprocal, a finite number

of resultants is sufficient. Specifically, as detailed in forthcoming work [32], it is shown

(using the results of this chapter) that 2d+1 resultants are enough. Empirical evidence

suggests that this is far from tight, and a conjecture of Sturmfels and Zworski asserts

the following.

Conjecture 2.5.1. A generic monic polynomial f(x) ∈ C[x] of degree d is determined

by its first d+1 cyclic resultants. Moreover, if f is (non-monic) reciprocal of even degree

d, then the number of resultants needed for inversion is given by d/2 + 2.

A straightforward algorithm for inverting N cyclic resultants is as follows. Its

correctness when N = 2d+1 follows from [8] and the results of [32].
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Algorithm 2.5.2. (Specific reconstruction of a polynomial from its cyclic resultants)

Input: Positive integer d and a sequence of r1, . . . , rN ∈ C.

Output: The coefficients ai (i = 0, . . . , d) corresponding to f .

(1) Compute a lexicographic Gröbner basis G for the ideal

I = 〈r1 − Res(f, x− 1), . . . , rN − Res(f, xN − 1)〉.

(2) Solve the resulting triangular system of equations for ai using back substitution.

If the data are given in terms of cyclic resultant absolute values (for the real

case), then more care must be taken in implementing Algorithm 2.5.2. Examining ex-

pression (2.3.5), there are 2 possible sequences of viable rm that come from a given

sequence of (generically generated) cyclic resultant absolute values |rm|; they are {|rm|}
and {−|rm|}. By the uniqueness in Corollaries 2.1.7 and 2.1.9, however, only one of

these sequences can come from a monic polynomial. Therefore, the corresponding mod-

ification is to run Algorithm 2.5.2 on both these inputs. For one of these sequences,

it will generate the Gröbner basis 〈1〉; while for the other, it will output the desired

reconstruction.

Finding “universal” equations expressing the coefficients ai in terms of the

resultants ri is also possible using a similar strategy.

Algorithm 2.5.3. (Formal reconstruction of a polynomial from its cyclic resultants)

Input: Positive integers d and N .

Output: Equations expressing ai (i = 0, . . . , d) parameterized by r1, . . . , rN .

(1) Let R = Q[a0, . . . , ad, r1, . . . , rN ] and let ≺ be any elimination term order with

{ai} ≺ {rj}.

(2) Compute the reduced Gröbner basis G for the ideal

I = 〈r1 − Res(f, x− 1), . . . , rN − Res(f, xN − 1)〉.

(3) Output a triangular system of equations for ai in terms of the ri.

51



A few remarks concerning Algorithm 2.5.3 are in order. If the ai are indeter-

minates, a monic polynomial with coefficients ai will be generic. Therefore, the first

N = 2d+1 cyclic resultants of f will determine it as a polynomial in x over an algebraic

closure of Q(a1, . . . , ad). It then follows from general theory (for instance, quantifier elim-

ination for ACF, algebraically closed fields) that each ai can be expressed as a rational

function in the ri (i = 1, . . . , N). The same result holds for reciprocal polynomials with

indeterminate coefficients. It is an interesting and difficult problem to determine these

rational functions for a given d. As motivation for future work on this problem, we use

Algorithm 2.5.3 to find these expressions explicitly for several small cases.

When f = a0x + a1 is linear, we need only two nonzero cyclic resultants to

recover the coefficients a0, a1. An inversion is given by the formulae:

a0 =
r22 − r1

2r1
, a1 =

−r21 − r2
2r1

.

In the quadratic case, a monic f = x2 + a1x + a2 is also determined by two nonzero

resultants:

a1 =
r21 − r2

2r1
, a2 =

r21 − 2r1 + r2
2r1

.

When f = x3 + a1x
2 + a2x + a3 has degree three, four resultants suffice, and inversion

is given by:

a1 =
−12r2r31 − 12r1r22 + 3r32 − r2r

4
1 − 8r2r1r3 + 6r21r4

24r2r21
,

a2 =
−r21 − 2r1 + r2

2r1
,

a3 =
−3r32 + r2r

4
1 + 8r2r1r3 − 6r21r4
24r21r2

.

Reconstruction for d = 4 is also possible using five resultants, however, the expressions

are too cumbersome to list here.

As a final example, we describe the reconstruction of a degree 6 monic, recip-

rocal polynomial f = x6 + a1x
5 + a2x

4 + a3x
3 + a2x

2 + a1x+ 1 from its first four cyclic

resultants:
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P = −540 r12r2 r4 − 13824 r13r2 + r1
6r2 + 27 r23r1

2 + 9 r14r2
2 + 27 r24 − 432 r13r2

2−

648 r1 r23 − 72 r15r2 − 448 r3 r13r2 + 192 r3 r1 r22 + 108 r14r4 + 1536 r12r2 r3+

2592 r13r4 + 1728 r14r2 + 5184 r12r2
2,

Q = r1
2 (−16 r3 r2 + 9 r4 r1) ,

R = −648 r1 r23 + 27 r23r1
2 + 27 r24 − 576 r3 r1 r22 + 2592 r13r4 + r1

6r2 − 72 r15r2+

9 r14r2
2 + 1728 r14r2 − 432 r13r2

2 + 320 r3 r13r2 − 324 r14r4 − 13824 r13r2+

5184 r12r2
2 + 1536 r12r2 r3 − 108 r12r2 r4,

a1 =
1

192
P/Q, a2 =

−4 r1 + r1
2 + r2

4r1
, a3 =

−1
96
R/Q.
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Chapter 3

Logarithmic Derivatives

3.1 Statement of Results

Using Gröbner basis techniques, we provide new constructive proofs of two theorems of

Harris and Sibuya [21, 22] (see also, [60, 61] and [62, Problem 6.60]) that give degree

bounds and allow for several generalizations. To prepare for the statement of the result,

we begin with some preliminary definitions.

Definition 3.1.1. A differential field is a fieldK equipped with a map called a derivation

D : K → K that is linear and satisfies the ordinary rule for derivatives; i.e.,

D(u+ v) = D(u) +D(v), D(uv) = uD(v) + vD(u).

When it is more convenient, we sometimes write u′, u′′, etc. for Du,D2u, etc.

Let F be a differential field extension of K (that is, a field extension that is also a

differential field). A linear homogeneous differential polynomial L(Y ) over K of order m

is a mapping from F to itself of form

L(Y ) = amD
m(Y ) + am−1D

m−1(Y ) + · · ·+ a1D(Y ) + a0Y, ai ∈ K, am 6= 0.

We may now state the results of Harris and Sibuya.

Proposition 3.1.2. Let N1, N2 > 1 be positive integers and let K be a differential field

of characteristic 0. Let F be a (differential) field extension of K and suppose that L1(Y )
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and L2(Y ) are nonzero homogeneous linear differential polynomials (of orders N1 and

N2 respectively) with coefficients in K. Further, suppose that one of the following holds:

(1) y ∈ F has L1(y) = L2(1/y) = 0, or

(2) N2 ≤ q ∈ Z+, and y ∈ F has L1(y) = L2(yq) = 0.

Then, Dy/y is algebraic over K.

In this chapter, we prove the following more refined result.

Theorem 3.1.3. Let N1, N2 > 1 be positive integers and let K be a differential field

of characteristic 0. Let F be a (differential) field extension of K. Suppose that L1(Y )

and L2(Y ) are nonzero homogeneous linear differential polynomials (of orders N1 and

N2 respectively) with coefficients in K. Further, suppose that one of the following holds:

(1) y ∈ F has L1(y) = L2(1/y) = 0, or

(2) N2 ≤ q ∈ Z+, and y ∈ F has L1(y) = L2(yq) = 0.

Then, Djy/y is algebraic over K for all j ≥ 1. Moreover, the degree of the minimal

polynomial for Djy/y (j = 1, . . . , N1 − 1) in (1) is at most
(
N2+N1−2

N1−1

)
.

Remark 3.1.4. We note that with a more careful analysis, one may use our techniques

to get similar results for fields of sufficiently large characteristic.

The first part (algebraicity) of this theorem is proved in Section 3.3, while in

Section 3.4, we prove the specified degree bounds. Finally, in Section 3.5, we describe

how our technique applies to certain nonlinear differential equations. Recall that a

polynomial f ∈ K[x] is called separable if all of its roots are distinct, and a field K is

called perfect if every irreducible polynomial in K[x] is separable. Examples of perfect

fields include finite fields, fields of characteristic zero, and, of course, algebraically closed

fields. It is interesting to note that there is a converse to Theorem 3.1.3 for this class of

fields.

Proposition 3.1.5. Let K be a perfect field. If y′/y is algebraic over K, then both y

and 1/y satisfy linear differential equations over K.
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Proof. Suppose that K is perfect and u = y′/y is algebraic over K. Let f(x) = xm +

am−1x
m−1 + · · ·+a0 ∈ K[x] be the monic, irreducible polynomial for u over K. Since K

is perfect, it follows from basic field theory that gcd(f, ∂f
∂x ) = 1. In particular, ∂f

∂x 6= 0.

Consider now,

0 = f(u)′ = u′

(
mum−1 +

m−1∑
i=1

iaiu
i−1

)
+

m−1∑
i=0

a′iu
i.

Since ∂f
∂x = mxm−1 +

∑m−1
i=1 iaix

i−1 is not the zero polynomial, it follows from the irre-

ducibility of f that mum−1 +
∑m−1

i=1 iaiu
i−1 6= 0. Hence, u′ ∈ K(u) and the same holds

for higher derivatives.

Next, notice that (1/y)′ = −y′/y2 = −u/y and an easy induction gives us

that (1/y)(k) = pk(u, u′, u′′, . . .)/y, in which pk is a polynomial (over K) in u and its

derivatives (set p0 = 1). By above, the polynomials pk(u, u′, . . .) lie in the field K(u).

This implies that they satisfy some (non-trivial) linear dependence relation,

N∑
k=0

hkpk = 0,

in which hk ∈ K. Therefore,

0 =
N∑

k=0

hkpk/y =
N∑

k=0

hk(1/y)(k)

as desired. Performing a similar examination on the derivatives of y′ = uy produces a

linear differential equation for y over K, completing the proof.

As an application of our main theorem, take F to be the field of complex

meromorphic functions on C and K = Q. Then, the only y such that both y and 1/y

satisfy linear differential equations over K are the functions, y = ceux, in which u is an

algebraic number of degree at most min{N1, N2} and c ∈ C \ {0}. This simple example

shows that it is possible to produce a minimum degree of min{N1, N2} for y′/y; however,

it is still an open question of whether we can achieve a minimum degree close to the bound

given in Theorem 3.1.3.

Theorem 3.1.3 can also be used to show that elements in a differential field F

do not satisfy linear differential equations over a subfield K, as the following example

demonstrates.
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Example 3.1.6. ([62, Problem 6.59]). Let K = C(x) and F = C((x)). Then, sec(x)

does not satisfy a linear differential equation over K. To see this, suppose otherwise.

Then, since y = cos(x) satisfies a linear differential equation, Theorem 3.1.3 would imply

that y′/y = cos(x)′/ cos(x) = − tan(x) is algebraic over C(x), a contradiction.

3.2 Algebraic Preliminaries

We begin by quickly reviewing some standard terminology (some of this material overlaps

that of Chapter 1). Let K be a field. A term order (or monomial ordering) on Nn is a

total order ≺ that is a well-ordering and is linear:

a ≺ b ⇒ a + c ≺ b + c,

for a, b, c ∈ Nn. This ordering of Nn gives a corresponding ordering on the monomials

of R = K[x1, . . . , xn].

Given a polynomial f ∈ R, the leading monomial of f (simply written lm≺(f))

is the largest monomial occurring in f with respect to ≺. The initial ideal of an ideal

I ⊆ R is defined to be

in≺(I) := 〈lm≺(f) : f ∈ I〉.

A Gröbner Basis for an ideal I ⊆ R is a finite subset G = {g1, . . . , gm} of I such that:

〈lm≺(g1), . . . , lm≺(gm)〉 = in≺(I).

There is a canonical Gröbner basis for an ideal with respect to a fixed term order called

the reduced Gröbner Basis of I, and it can be computed algorithmically [9].

Let I be an ideal of a polynomial ring R = K[x1, . . . , xn] over the field K and

let V (I) be the corresponding variety (we work over Kn to simplify exposition):

V (I) := {(a1, . . . , an) ∈ Kn : f(a1, . . . , an) = 0 for all f ∈ I}.

We call V (I) zero-dimensional if it consists of a finite number of points. The following

characterization of zero-dimensional varieties can be found in [9, p. 230].

Theorem 3.2.1. Let V (I) be a variety in Kn and fix a term ordering ≺ for K[x1, . . . , xn].

Then the following statements are equivalent:
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(1) V is a finite set.

(2) For each i, 1 ≤ i ≤ n, there is some mi ≥ 0 such that xmi
i ∈ in≺(I).

(3) Let G be a Gröbner basis for I. Then for each i, 1 ≤ i ≤ n, there is some mi ≥ 0

such that xmi
i = lm≺(g) for some g ∈ G.

The following fact is well-known, but we include a proof for completeness.

Proposition 3.2.2. If V (I) is a zero-dimensional variety, then the coordinates of every

point of V (I) are algebraic over K.

Proof. Let (a1, . . . , an) be a point in V (I). We prove that a1 is algebraic overK (the other

coordinates are treated similarly). Fix a lexicographic term order ≺ on K[x1, . . . , xn]

such that x1 < x2 < · · · < xn, and let G be a reduced Gröbner basis for I with respect

to this term order. Then, it follows from Theorem 3.2.1 that xm
1 = lm≺(g) for some

0 6= g ∈ G and m ≥ 0. Since G is computed using operations in the field K (the

ideal I is defined over K), it follows that g ∈ K[x1, . . . , xn]. Moreover, our term order

insures that g(x1, . . . , xn) = g(x1) is a univariate polynomial in the variable x1. Since

g(a1, . . . , an) ∈ I, we must have that g(a1) = 0. It follows that a1 is algebraic over K,

completing the proof.

Proposition 3.2.2 is an important tool in the proof of our main theorem. We

now describe another ingredient in the solution of our problem, although its generality

should be useful in many other contexts. Give R a grading by assigning to each xi, a

number w(xi) = wi ∈ N, so that

w

(
n∏

i=1

xvi
i

)
=

n∑
i=1

viwi.

Then, we have the following extension of a result of Sperber [61]. A proof of a general-

ization can be found in [57, Lemma 2.2.2]; however, again for completeness we include

an argument for our special case.

Lemma 3.2.3. Let I be the ideal of R = K[x1, . . . , xn] generated by a collection of

polynomials, {fβ}β∈Γ ⊆ R. Let f̃β be the leading homogeneous form of fβ with respect

to the above grading, and let J be the ideal generated by {f̃β}β∈Γ. Then, if V (J) is

zero-dimensional, so is V (I).
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Proof. Fix a grading w = (w1, . . . , wn) ∈ Nn and let ≺ be a monomial ordering on R.

Define a new monomial ordering ≺w as follows [64, p. 4]: for a, b ∈ Nn we set

a ≺w b :⇔ w · a < w · b or (w · a = w · b and a ≺ b).

Since V (J) is zero-dimensional, as before, Theorem 3.2.1 tells us that for each i ∈
{1, . . . , n} there exist integers mi ≥ 0 such that xmi

i ∈ in≺w(J). From Dickson’s Lemma

[9, p. 69], it follows that in≺w(J) can be finitely generated as

〈lm≺w(f̃β1), . . . , lm≺w(f̃βq)〉

for some positive integer q and βj ∈ Γ. Thus, we may write

xmi
i =

q∑
j=1

gi,j · lm≺w(f̃βj
)

for polynomials gi,j . Set g̃i,j to be the terms in gi,j of weight miwi−w(f̃βj
), and also let

ĝi,j = gi,j − g̃i,j . Notice that the equation above then implies

xmi
i =

q∑
j=1

ĝi,j · lm≺w(f̃βj
) +

q∑
j=1

g̃i,j · lm≺w(f̃βj
).

The first sum on the right above has terms of weight that are different from miwi, while

the second has terms of only this weight. Since the left-hand-side of the equation has

weight miwi, we must have that

q∑
j=1

ĝi,j · lm≺w(f̃βj
) = 0.

Finally, define

hi =
q∑

j=1

g̃i,jfβj
∈ I.

It is clear that the leading term (with respect to ≺w) of hi is xmi
i . But then again using

Theorem 3.2.1, we have that V (I) is a finite set, completing the proof.

In other words, this lemma says that in many instances information about an

ideal I can be uncovered by passing to a simpler ideal involving leading forms. This

fundamental concept is an important component in Gröbner deformation theory.
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3.3 Proofs of The Main Theorems

Before embarking on proofs of the theorems stated in Section 3.1, we present a simple

example to illustrate our technique. Let y1, y2, . . . be variables. We will view yj = Djy/y

as solutions to a system of polynomial equations over K[{yj}∞j=1]. For example, consider

the system (N1 = 3, N2 = 2):

y′′′ + a2y
′′ + a1y

′ + a0y = 0,

(1/y)′′ + b1(1/y)′ + b0(1/y) = 0

in which a2, a1, a0, b1, b0 ∈ K. Dividing the first equation by y and expanding the second

one gives us the more suggestive equations:

y3 + a2y2 + a1y1 + a0 = 0,

(2y2
1 − y2)− b1y1 + b0 = 0.

Also, differentiating the original equation for 1/y and expanding, we have that

−6y3
1 + 6y1y2 − y3 + b1(2y2

1 − y2)− y1(b′1 + b0) + b′0 = 0.

Thus, we may view (y′/y, y′′/y, y′′′/y) = (y1, y2, y3) as a solution to a system of three

polynomial equations in three unknowns.

Let w(yi) = i define a grading of K[y1, y2, y3], and notice that the system of

leading forms, {y3 = 0, 2y2
1−y2 = 0,−6y3

1 +6y1y2−y3 = 0}, has only the trivial solution

(y1, y2, y3) = (0, 0, 0). In light of Lemma 3.2.3, it follows that the equations above define a

zero-dimensional variety. Therefore, appealing to Proposition 3.2.2, we have established

the algebraicity component of Theorem 3.1.3 (1) for this example (N1 = 3, N2 = 2).

In general, we will construct a system of N1 − 1 equations in N1 − 1 unknowns

satisfied by the yi. These equations will define a zero-dimensional variety, and thus, stan-

dard elimination techniques (see, for instance, [8]) give us a direct method of computing,

for each i, a nonzero polynomial (over K) satisfied by yi.

Let us first examine what happens when we compute fn = Dn(1/y). Notice
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that

f0 = 1/y

f1 = −y−2Dy = −y1/y

f2 = 2y−3(Dy)2 − y−2D2y = 2y2
1/y − y2/y

f3 = −6y3
1/y + 6y1y2/y − y3/y.

In general, these functions fn can be expressed in the form fn = (1/y)pn(y1, . . . , yn)

for polynomials pn ∈ Z[y1, . . . , yn]. Moreover, with respect to the grading w(yi) = i,

these pn are homogeneous of degree n. These facts are easily deduced from the following

lemma.

Lemma 3.3.1. Let m ∈ Z+. Then,

pm

m!
= −

m−1∑
j=1

pm−j

(m− j)!
yj

j!
− ym

m!
.

Proof. Consider the following well-known identity (Leibniz’ rule),

m∑
j=0

(
m

j

)(
Djh

) (
Dm−jg

)
= Dm(hg).

Setting h = y and g = 1/y, it follows that

m∑
j=0

Djy

j!
Dm−j(1/y)
(m− j)!

= 0.

Multiplying the numerator and denominator by y and rewriting this expression

gives us
pm

m!
= − pm−1

(m− 1)!
y1

1!
− pm−2

(m− 2)!
y2

2!
− · · · − p1

1!
ym−1

(m− 1)!
− ym

m!
.

We are now ready to prove Theorem 3.1.3 (1).

Proof of Theorem 3.1.3 (1). With N1, N2 as in Theorem 3.1.3, we suppose N1 = n,

N2 = m. Dividing through by y in the first differential equation for y gives us

yn = −an−1yn−1 − · · · − a1y1 − a0, ai ∈ K (3.3.1)
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while multiplying the second one for 1/y by y produces the equation

pm + bm−1pm−1 + · · ·+ b0 = 0, bi ∈ K.

Differentiating k times the original linear differential equation for y, we will arrive at

linear equations yn+k = Lk(y1, . . . , yn−1) in terms (over K) of y1, . . . , yn−1 like (3.3.1)

above (by repeated substitution of the previous linear equations). If we also differentiate

the equation for 1/y k times, we will produce another equation for the variables yi. More

formally, we have that

Dm+k(1/y) +Dk(bm−1D
m−1(1/y)) + · · ·+Dk(b0/y) = 0

produces the equation (by Leibniz’ rule)

Dm+k(1/y) +
m−1∑
i=0

k∑
j=0

(
k

j

)(
Djbi

) (
Dk−j+i (1/y)

)
= 0.

So finally (after multiplying through by y), it follows that

Pm+k := pm+k +
m−1∑
i=0

k∑
j=0

(
k

j

)(
Djbi

)
pk−j+i = 0. (3.3.2)

It is clear that the leading homogeneous forms of the Pm+k (with respect to

the grading above) are pm+k. Consider now the ring homomorphism φ : K[{yi}∞i=1] →
K[y1, . . . , yn−1] defined by sending yj 7→ 0 for j ≥ n and yj 7→ yj for j < n. Let P̃m+k

denote the polynomials produced by substituting the linear forms Li for the variables

yn+i (i = 0, 1, . . .) into the polynomials, Pm+k. The leading homogeneous forms of the

P̃m+k will just be p̃m+k := φ(pm+k) because we are substituting linear polynomials with

strictly smaller degree (corresponding to the grading). In light of Lemma 3.2.3, we verify

that the n− 1 equations (in the n− 1 variables),

p̃m = 0, p̃m+1 = 0, . . . , p̃m+n−2 = 0, (3.3.3)

are only satisfied by the point (0, . . . , 0) to prove the claim.

Suppose that (y1, . . . , yn−1) 6= (0, . . . , 0) is a zero of the system in (3.3.3); we

will derive a contradiction. Let r ∈ {1, . . . , n−1} be the largest integer such that yr 6= 0,
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and choose t ∈ {0, . . . ,m− 1} maximal such that p̃m−t = 0, p̃m−t+1 = 0, . . ., p̃m = 0. If

t = m− 1, then p̃1 = −y1 = 0, and so the recurrence in Lemma 3.3.1 and (3.3.3) give us

that yi = 0 for i ∈ {1, . . . , n− 1}, a contradiction. Thus, t ≤ m− 2. Using Lemma 3.3.1

with φ (and the maximality of r), we have the following identity:

p̃m−t+r−1

(m− t+ r − 1)!
= − p̃m−t+r−2

(m− t+ r − 2)!
y1

1!
− · · · − p̃m−t

(m− t)!
yr−1

(r − 1)!
− p̃m−t−1

(m− t− 1)!
yr

r!
.

From (3.3.3) and the property of t above, it follows that p̃m−t−1

(m−t−1)!
yr

r! = 0. Thus,

yr = 0 or p̃m−(t+1) = 0; the first possibility contradicts yr 6= 0, while the second contra-

dicts maximality of t.

This proves that the equations (3.3.3) define a zero-dimensional variety, from

which the algebraicity of Djy/y (j = 1, . . . , n− 1) follows using Proposition 3.2.2. With

repeated differentiation of (3.3.1), we also see that Djy/y is algebraic for all j ≥ n. The

proof of the degree bounds will be postponed until Section 3.4.

The proof for Theorem 3.1.3 (2) is similar to the one above, however, the

recurrences as in Lemma 3.3.1 are somewhat more complicated. Let n ∈ N, q ∈ Z+

and examine fn,q = Dn(yq). It turns out that fn,q = yqpn,q(y1, . . . , yn) in which pn,q ∈
Z[y1, . . . , yn] is homogeneous of degree n (with respect to the grading w(yi) = i). This

follows in a similar manner as before from the following lemma.

Lemma 3.3.2. Let pn,1 = yn for n ∈ N (y0 = 1). Then, for all m ∈ N, q > 1,

pm,q = ym +
m−1∑
j=0

(
m

j

)
yjpm−j,q−1.

Proof. Use Leibniz’ rule as in Lemma 3.3.1 with h = yq−1 and g = y.

The next lemma will be used in the proof of Theorem 3.1.3 (2), and it follows

from a straightforward induction on a (using Lemma 3.3.2).

Lemma 3.3.3. Let φ be as in the proof of Theorem 3.1.3 (1) and n ≥ 2. Then, for all

a ∈ Z+ and b ∈ N, we have φ
(
p(a+1)(n−1)+b,a

)
= 0.

We now prove Theorem 3.1.3 (2).
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Proof of Theorem 3.1.3 (2). With N1, N2 as in Theorem 3.1.3, we suppose N1 = n,

N2 = m ≤ q. As before, the first differential equation for y gives us

yn = −an−1yn−1 − · · · − a1y1 − a0 ai ∈ K (3.3.4)

while the second one for yq (after dividing through by yq) produces the equation

pm,q + bm−1pm−1,q + · · ·+ b0 = 0 bi ∈ K.

Differentiating k times the original linear differential equation for y, produces linear

equations yn+k = Lk(y1, . . . , yn−1) in terms (over K) of y1, . . . , yn−1 like (3.3.4) above.

If we also differentiate the equation for yq, k times, we will arrive at another equation

for the variables yi:

Pm+k,q := pm+k,q +
m−1∑
i=0

k∑
j=0

(
k

j

)(
Djbi

)
pk−j+i,q = 0.

It is clear that the leading homogeneous forms of the Pm+k,q (with respect to

the grading above) are pm+k,q. Let φ be as in the proof of Theorem 3.1.3 (1), and

let P̃m+k,q denote the polynomials produced by substituting the linear forms Li for the

variables yn+i (i = 0, 1, . . .) into the polynomials, Pm+k,q. If p̃m+k,q := φ(pm+k,q) 6= 0,

then the leading homogeneous form of P̃m+k,q is p̃m+k,q because we are substituting linear

polynomials with strictly smaller degree (corresponding to the grading).

Consider the following system of equations (recall that q ≥ m and n ≥ 2),

p̃m,q = 0, p̃m+1,q = 0, . . . , p̃(q+1)(n−1)−1,q = 0. (3.3.5)

We claim that (0, . . . , 0) is the only solution to (3.3.5). Suppose, on the contrary, that

(y1, . . . , yn−1) 6= (0, . . . , 0) is a solution to (3.3.5), and let r ∈ {1, . . . , n−1} be the largest

integer such that yr 6= 0. Also, choose t ∈ {1, . . . , q} minimial such that

p̃tr,t = 0, p̃tr+1,t = 0, . . . , p̃(t+1)r−1,t = 0. (3.3.6)

Clearly t 6= 1, as then p̃r,1 = yr = 0, a contradiction. Applying Lemma 3.3.2 with φ (and

maximality of r), examine the equation,

p̃(t+1)r−1,t = p̃(t+1)r−1,t−1 + · · ·+
(

(t+ 1)r − 1
r

)
yrp̃tr−1,t−1. (3.3.7)
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Using Lemma 3.3.3 (with a = t− 1) and the maximality of r, we have p̃tr+b,t−1 = 0 for

all b ∈ N. Consequently, (3.3.7) and (3.3.6) imply that p̃tr−1,t−1 = 0. Repeating this

examination with p̃(t+1)r−2,t, p̃(t+1)r−3,t, . . . , p̃tr,t (in that order) in place of p̃(t+1)r−1,t on

the left-hand side of (3.3.7), it follows that p̃tr−i,t−1 = 0 for i = 1, . . . , r. This, of course,

contradicts the minimality of t and proves the claim.

It now follows from Lemma 3.2.3 that the variety determined by{
P̃m,q = 0, . . . , P̃(q+1)(n−1)−1,q = 0

}
is zero-dimensional. An application of Proposition 3.2.2 completes the proof.

3.4 The Degree Bounds

In this section, we outline how to obtain the degree bounds in Theorem 3.1.3. We begin

by stating a useful theorem that bounds the cardinality of a variety by the product of

the degrees of the polynomials defining it (see [59] for more details).

Theorem 3.4.1 (Bezout’s theorem). Let K be an arbitrary field, and let f1, . . . , ft ∈
K[y1, . . . , yt]. If V (f1, . . . , ft) is finite, then

|V (f1, . . . , ft)| ≤
t∏

i=1

deg(fi).

We next make the following straightforward observation.

Lemma 3.4.2. Let K be a perfect field, and let I ⊂ K[y1, . . . , yt] be such that V (I) is

finite. Then, the degree of the minimal polynomial for each component of an element in

V (I) is bounded by the number of elements of V (I).

Proof. Suppose that g(x) ∈ K[x] is the irreducible polynomial for y ∈ K, a component

of (y1, . . . , y, . . . , yt) ∈ V (I). Since K is perfect, this polynomial has distinct roots.

Thus, there are deg(g) distinct embeddings σ : K(y) → K that are the identity on K.

Moreover, each of these homomorphisms extends to an embedding σ̃ : K → K [39, p.

233]. In particular, the deg(g) points, (σ̃y1, . . . , σ̃y, . . . , σ̃yt), are all distinct elements of

V (I). Thus, we must have

deg(g) ≤ |V (I)|.
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This completes the proof.

Theorem 3.4.3. Assuming the hypothesis as in Theorem 3.1.3, the degree of the poly-

nomial for Djy/y (j = 1, . . . , N1 − 1) over K in (1) is at most
(
N2+N1−2

N1−1

)
.

Proof. Let N1 = n, N2 = m and set P̃m+k ∈ K[y1, . . . , yn−1] (k = 0, . . . , n − 2) to be

the polynomials in (3.3.2) after substitution of the linear forms, yn+i = Li(y1, . . . , yn−1).

Corresponding to the grading w(yj) = j, the weight of each monomial in P̃m+k is less

than or equal to m + k. Let S̃ be the set of all solutions with coordinates in K to the

system {P̃m+k = 0}n−2
k=0 . Our first goal is to bound the cardinality of S̃ by

(
m+n−2

n−1

)
.

Suppose that {yi,1, . . . , yi,s} is the list of all s distinct i-th coordinates of mem-

bers of S̃. SinceK is infinite, there exists ki ∈ K such that yi,j 6= ki for j = 1, . . . , s. Now,

let x1, . . . , xn−1 be variables and consider the new polynomials Fm+k ∈ K[x1, . . . , xn−1]

produced by the substitution yi = xi
i +ki in the P̃m+k. As the n−1 equations P̃m+k = 0

define a zero-dimensional variety, so do the n− 1 equations Fm+k = 0.

Let S denote the set of all solutions with coordinates in K to the system

{Fm+k = 0}n−2
k=0 . Since the total degree of each Fm+k is just m+ k, we have by Bezout’s

theorem (Theorem 3.4.1),

|S| ≤ (m+ n− 2)!
(m− 1)!

= (n− 1)!
(
m+ n− 2
n− 1

)
.

Consider the (set-theoretic) map ψ : S → S̃ given by

(x1, . . . , xn−1) 7→ (x1 + k1, . . . , x
n−1
n−1 + kn−1).

It is easy to see that ∑
s∈S̃

∣∣ψ−1(s)
∣∣ = |S|. (3.4.1)

Let (y1, . . . , yn−1) ∈ S̃. By our choice of ki, the polynomial hi(xi) = xi
i + ki − yi has

precisely i distinct zeroes. These i roots are distinct since characteristic zero implies

that gcd(hi,
∂hi
∂x ) = 1. Hence,

∣∣ψ−1(s)
∣∣ ≥ (n− 1)! for all s ∈ S̃, and so from

|S̃|(n− 1)! ≤ |S| ≤
(
m+ n− 2
n− 1

)
(n− 1)!,

we arrive at the desired bound on |S̃|.
An application of Lemma 3.4.2 now completes the proof.
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We should also note that the proof above generalizes to bound the number of

distinct solutions to certain systems of equations. Specifically, we have the following

interesting fact.

Theorem 3.4.4. Let w(yj) = j be the grading as above and let K be a field of char-

acteristic zero. Let m ∈ Z+ and suppose that {Fm+k(y1, . . . , yn−1) = 0}n−2
k=0 is a zero-

dimensional system of polynomial equations over K such that each monomial in Fm+k

has weight less than or equal to m + k. Then, this system will have at most
(
m+n−2

n−1

)
distinct solutions with coordinates in K.

In principle, the number of solutions for a generic system with conditions as in

Theorem 3.4.4 can be found by a mixed volume computation and Bernstein’s Theorem

(see [8], for instance). This approach, however, seems difficult to implement.

3.5 Applications to Nonlinear Differential Equations

In the proof of Theorem 3.1.3, it is clear that the important attributes of the recursions

as in (3.3.1) are that they reduce the degree and are polynomial in nature. In particular,

it was not necessary that they were linear. For example, the system,

yy′′′ + a(y′)2 + by2 = 0,

(1/y)′′ + c(1/y)′ + d(1/y) = 0

gives us the recurrence y3 + ay2
1 + b = 0 (divide the first equation by y2), which has

y3 expressible as a polynomial in y1, y2 with strictly smaller weight. Repeated differ-

entiation of this equation, preserves this property. In general, let h ∈ K[z1, . . . , zn]

be a homogeneous polynomial (with respect to total degree) such that each monomial

zα = zα1
1 · · · zαn

n has
n∑

i=1

(i− 1)αi < n.

If the hypothesis of Theorem 3.1.3 are weakened to allow y to satisfy an equation of the

form, Dny = h(y,Dy, . . . ,D(n−1)y), then the proof applies without change. A general-

ization along these lines was also considered by Sperber in [61], however, the techniques

developed here give us degree bounds just as in Theorem 3.1.3.
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Chapter 4

Symmetric Word Equations in

Positive Definite Letters

4.1 Introduction

In this chapter, we consider a natural matrix generalization to the elementary scalar

equation

bxs = p,

in which b > 0, p ≥ 0, s ∈ Z+ and x is a nonnegative real indeterminate. One difficulty

with an extension is dealing with matrix noncommutativity, while another is determining

what should be meant by the words “real” and “nonnegative.” Fortunately for us, the

latter concerns have already long been addressed: the natural matrix interpretation

of the reals are the Hermitian matrices, while nonnegative (resp. positive) numbers

correspond to those complex Hermitian matrices with all nonnegative (resp. positive)

eigenvalues, the so-called positive semidefinite (resp. positive definite) matrices. The

issue of noncommutativity, however, is of a more subtle nature, and we first introduce

some notation before addressing it.

Fix a positive integer k, and let W = W (X,B1, . . . , Bk) be a word in the

letters X and B1, . . . , Bk. The reversal of W is the word written in reverse order, and it

is denoted by W ∗. A word is symmetric if it is identical to its reversal (in other contexts,

the name “palindromic” is also used). As we shall soon see (see Sections 4.2 and 4.3),
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formulating our generalization requires restriction to a special class of words. For the

purposes of this work, an interlaced word W = W (X,B1, . . . , Bk) in the interlacing

letter X is a juxtaposition of powers of letters that alternate in X. More precisely, an

interlaced word is an expression of the form,

W = Bq1
i1

m∏
j=1

XpjB
qj+1

ij+1
, (4.1.1)

in which the exponents pj > 0, qj ≥ 0 are nonnegative integers and {i1, . . . , im+1} ⊆
{1, . . . , k}. (Here, of course, we consider the zeroth power of a letter to be the empty

word, the identity element of the monoid). For example, the word B1XB
7
3X

2B3
2X

5 is

interlaced, whereas the word XB1B2XB2B1X is not. The integer s = p1 + · · · + pm is

called the degree of the interlaced word W .

The interlacing letter X is distinguished, and is to be viewed as an indetermi-

nate n× n positive semidefinite matrix, while the letters B1, . . . , Bk correspond to fixed

n×n positive definite matrices. For convenience, the letters X and Bi will also represent

the substituted matrices (the context will make the distinction clear). When k = 1, the

set of interlaced words is simply the set of all words in two letters containing at least

one X. For notational simplicity, when k is understood, we write W (X,Bi) in place of

W (X,B1, . . . , Bk).

Returning to our motivating example, notice that there is a unique nonnegative

solution to the equation bxs = p for every pair of positive b and nonnegative p; we would

like to generalize this observation. Our introductory remarks prepare us to make the

following definition.

Definition 4.1.1. A symmetric word equation is an equation, S(X,Bi) = P , in which

S(X,Bi) is an interlaced symmetric word. If the Bi are positive definite and P is

positive semidefinite, then any positive semidefinite matrix X for which the equation

holds is called a solution to the symmetric word equation.

A symmetric word equation will be called solvable if there exists a solution for

every positive definite n×n matrices Bi and n×n positive semidefinite P . Moreover, if

each such Bi and P give rise to a unique solution, the equation will be called uniquely

solvable.
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Theorem 4.1.2 (Hillar and Johnson). Every symmetric word equation is solvable.

Moreover, if the parameters P and Bi are real, then there is a real solution.

Theorem 4.1.2 first appeared in [29, Theorem 7.1]. Its proof was accomplished

using fixed point methods. The authors left open the problem of uniqueness.

Conjecture 4.1.3. Every symmetric word equation is uniquely solvable.

Uniquely solvable equations are ubiquitous (see Section 4.5, where we produce

a large family of them). Recently, Lawson and Lim [40] have verified Conjecture 4.1.3

in the case that the degree of S(X,Bi) is not greater than five. Their approach utilizes

the Riemannian metric on the set of positive definite matrices and Banach’s fixed point

theorem.

In this chapter, we resolve Conjecture 4.1.3 negatively in the case n ≥ 3.

Theorem 4.1.4. There are symmetric word equations of degree 6 which have multiple

real 3× 3 positive definite solutions.

Conjecture 4.1.3 remains open in the case of 2× 2 matrices.

Theorem 4.1.4 shows that the result of Lawson and Lim is optimal. Although

uniqueness fails in general, our approach allows us to verify that these equations are still

well-behaved in the following sense.

Theorem 4.1.5. Fix an interlaced symmetric word S and real positive definite matrices

B1, . . . , Bk and P . There is a bounded open subset U of real positive definite matrices

such that all real solutions X of the equation f(X) = S(X,Bi) = P lie in U . Moreover,

identifying the real symmetric matrices with Rm we have that

deg(f, U, P ) = 1.

Here, deg(f, U, P ) is the Brouwer degree of f at P with respect to U ; in a

vague sense, it gives a topological measure of the number of solutions inside U to the

equation f(X) = P . See Example 4.2.5 for a (non-interlaced) symmetric word equation

with an unbounded set of solutions. Theorem 4.1.5 implies a special case of Theorem

4.1.2, giving a second proof of existence in the real case.

70



Corollary 4.1.6. Every symmetric word equation in real positive definite letters has a

real positive semidefinite solution.

Proof. The result follows from Theorem 4.1.5, Theorem 4.6.2, and Lemma 4.7.1.

Corollary 4.1.7. For almost every real positive definite matrix P , the symmetric word

equation

S(X,Bi) = P

has an odd (and thus finite) number of real solutions X.

Proof. By Theorems 4.1.5 and 4.7.3, at any regular value P of the map X 7→ S(X,Bi),

the equation S(X,Bi) = P has an odd number of solutions X. By Sard’s theorem, the

set of regular values is a set of full measure, completing the proof.

The proof of Theorem 4.1.5 is the content of Sections 4.8, 4.9 and 4.10. The

arguments in the proof often employ the reductions found in Section 4.6. Some con-

sequences of Theorem 4.1.5 are explored in Section 4.11, including a proof of Theorem

4.1.4. In Sections 4.2 and 4.3 we explain why we restrict our attention to interlaced

symmetric words, and Sections 4.4 and 4.5 are devoted to applications and a special

class of uniquely solvable words, respectively. In Section 4.7 we review the theory of

Brouwer degree.

4.2 A Collection of Examples

The simplest instance of a symmetric word equation arises in the following example ([34,

p. 413] and [34, p. 433]); it is the most straightforward generalization of the scalar case.

Example 4.2.1. Let P be any positive semidefinite matrix and let S(X) be the word

Xm, for a positive integer m. Then, there is a unique positive semidefinite solution to

the equation S(X) = P . In fact, writing P = UDU∗ for a unitary matrix U and a

nonnegative diagonal matrix D, we have X = UD1/mU∗.

As another example, we examine a special case of the algebraic Riccati equation,

which is encountered frequently in control theory [51].
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Example 4.2.2. The equation, XBX = P , has a unique positive semidefinite solution

given positive definite B and positive semidefinite P . Moreover, it is given by

X = B−1/2(B1/2PB1/2)1/2B−1/2.

This fact can be deduced from the proof of Proposition 4.5.2, in which a large class of

word equations are shown to be uniquely solvable. When P is invertible, this solution

can also be expressed as

X = P 1/2(P−1/2B−1P−1/2)1/2P 1/2,

even though this expression appears quite different.

As promised, we now explain why it makes sense to restrict our attention to

interlaced symmetric words. A first obstacle in generalizing the scalar case is that most

words do not evaluate to positive semidefinite matrices upon substitution. One simple

example is the word XB, which does not even have to be Hermitian when X and B are

positive definite. Similarly, the unique matrix solution X of the equation XB = P is

not in general positive semidefinite. It turns out that the right class of words to consider

are the symmetric ones, and this is evidenced by the following discussion.

Recall that two n× n matrices X and Y are said to be congruent if there is an

invertible n×n matrix Z such that Y = Z∗XZ (here, C∗ denotes the conjugate transpose

of a complex matrix C); and that congruence on Hermitian matrices preserves inertia

(the ordered triple consisting of the number of positive, negative, and zero eigenvalues)

and, thus, positive definiteness [33, p. 223]. A symmetric word evaluated at positive

definite matrices is inductively congruent to the “center,” positive definite matrix. We

conclude that

Lemma 4.2.3. A symmetric word evaluated at positive definite matrices is positive

definite.

A more careful examination (or a simple continuity argument) also proves the

following.

Lemma 4.2.4. A symmetric word evaluated at positive semidefinite matrices is positive

semidefinite.
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Conversely, it may be shown that symmetric words are the only words that are

positive definite for all positive definite substitutions (see Section 4.3 for a proof). In

light of these facts, restricting our consideration to symmetric words seems appropriate.

Next, we discuss the difficulties that arise when considering non-interlaced sym-

metric words. As the following examples demonstrate, both uniqueness and existence

may fail even when k = n = 2 and s = 3.

Example 4.2.5. Let S(X,B1, B2) = XB1B2XB2B1X and set

B1 =

 3 −1

−1 1

 , B2 =

 2 1

1 1

 , and P =

 0 0

0 0

 .
Then, as is easily verified, the equation S(X,B1, B2) = P has symmetric solutions

X =

 0 0

0 x

 and X =

 x/5 −x
−x 5x

 ,
in which x is an arbitrary real number. In particular, there are infinitely many positive

semidefinite solutions (in two distinct solution classes). Notice also that the kernel of a

solution X and that of P can be different. For interlaced words, this situation cannot

occur (see Lemma 4.6.1).

Example 4.2.6. Let S and B1, B2 be as in the previous example, but instead set

P =

 0 0

0 1

 .
Then, there are no positive semidefinite solutions to S(X,B1, B2) = P . To verify this,

suppose that

X =

 e f

g h


is a complex solution to S(X,B1, B2) = P . Computing the ideal generated by the 4

consequent polynomial equations (using Maple or Macaulay 2 to find the reduced Gröbner

basis), we find that it is the entire ring C[e, f, g, h]. In particular, there are no matrix

solutions over C to the given equation, much less positive semidefinite ones.
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4.3 Relations Between Positive Definite Words

In this section, we explain our restriction to symmetric words. Specifically, we prove

that a word W (A,B) in two letters A and B is positive definite for all positive definite

substitutions if and only if the word is symmetric.

We begin by illustrating some of the subtlety of the problem. Let B and P be

positive definite matrices. In Example (4.2.2) we saw that

P 1/2
(
P−1/2B−1P−1/2

)1/2
P 1/2 = B−1/2

(
B1/2PB1/2

)1/2
B−1/2,

even though both expressions are quite different. In fact, both sides of the above equality

are the unique solution X to the symmetric word equation,

S(X,B) = XBX = P.

Fortunately, such behavior does not occur with words, as the following discussion illus-

trates.

Let W be the set of words in two letters A and B, and fix a, b to be two n× n

complex matrices. Consider the evaluation homomorphism Evala,b : W → Mn(C) which

sends a word W (A,B) to the matrix W (a, b) produced by substituting the matrices a

and b for the letters A and B, respectively. By convention, the empty word is sent to the

identity matrix by this map. We describe a pair of positive definite a and b for which

this function is injective.

Lemma 4.3.1. The map Evala,b is injective when

a =

 3 1

1 1

 , b =

 1 1

1 3

 .
Proof. Let a, b be the matrices in the statement of the lemma, and let W1 and W2 be

two words for which W1(a, b) = W2(a, b); we must show that W1 and W2 are the same

word. If either W1 or W2 is the empty word, then the claim is clear (take a determinant).

Furthermore, since a and b are invertible, we may suppose that W1 = AU and W2 = BV

for some words U and V .
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Let x and y be indeterminates. Given a word W , we set W xx+W yy

Wxx+Wyy

 = W (a, b)

 x

y

 ,
for natural numbers W x,W y,Wx,Wy. Notice that by our choice of a and b, we cannot

have both W x and W y equal to zero. A direct computation shows that (AU)x−(AU)x =

2Ux and that (BV )x − (BV )x = −2Vx. By assumption, these two numbers are equal so

that Ux + Vx = 0. Since these two quantities are nonnegative integers, it follows that

Ux = Vx = 0. Similarly, the equality (AU)y − (AU)y = (BV )y − (BV )y implies that

Uy = Vy = 0. This contradiction finishes the proof.

Corollary 4.3.2. The following are equivalent for a word W .

(1) W is positive definite for all substitutions of positive definite A and B

(2) W is Hermitian for all substitutions of positive definite A and B

(3) W is Hermitian for all 2× 2 substitutions of positive definite A and B

(4) W is symmetric (“palindromic”)

In particular, if a word is Hermitian for all 2×2 substitutions of positive definite

A and B, then the word is necessarily positive definite for all such substitutions.

Proof. (1) ⇒ (2) ⇒ (3) is clear. If W (A,B) is always Hermitian for 2×2 positive definite

A and B, then W (A,B)∗ = W (A,B) for all such A and B. But then Lemma 4.3.1 says

that W ∗ and W must be identical as words. It follows that W is symmetric. This proves

(3) ⇒ (4). Finally, if W is symmetric, Lemma 4.2.3 says that W will always be positive

definite for any positive definite A and B. This completes the proof.

4.4 Applications

Symmetric word equations were first encountered while studying a trace conjecture [27]

involving words in two letters A and B (see also [28, 31]).
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Conjecture 4.4.1. A word in two letters A and B has positive trace for every pair of real

positive definite A and B if and only if the word is symmetric or a product (juxtaposition)

of 2 symmetric words.

For each solvable symmetric word equation, one can identify an infinite class of

words that admit real positive definite matrices A and B giving those words a negative

trace. The following is a brief description of this application. Consider the word W =

BABAAB, which is not symmetric nor a product of two symmetric words. In light of

Conjecture 4.4.1, we would like to verify that there exist real positive definite matrices

A and B giving W a negative trace. This is surprisingly difficult, as the methods in [27]

show. Resulting A and B that exhibit a negative trace are, for example,

A1 =


1 20 210

20 402 4240

210 4240 44903

 and B1 =


36501 −3820 190

−3820 401 −20

190 −20 1

 .
Consider now the following extension. Let T be the word given by T = S1S2,

in which S1 and S2 are symmetric words in the letters A and B. If the simultaneous

word equations
S1(A,B) = B1,

S2(A,B) = A1

may be solved for positive definite A and B given positive definite A1 and B1, then the

word TTT ∗ can have negative trace. Specializing to the case that S2 is the word A, we

have the following.

Corollary 4.4.2. Let S = S(A,B) be any symmetric word with at least one B. Then the

word SASAAS admits real positive definite matrices A and B giving it negative trace.

Proof. The matrix B1A1B1A1A1B1 has negative trace. Using Corollary 4.1.6, the equa-

tion S(A1, X) = B1 has a real positive definite solution X = B2. The two matrices

B = B2 and A = A1 are then the desired witnesses.

We should remark that Conjecture 4.4.1, while interesting in its own right,

arises from a long-standing problem in statistical physics. In [6], while studying partition

functions of quantum mechanical systems, a conjecture was made regarding a positivity
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property of traces of matrices. If this property holds, explicit error bounds in a sequence

of Padé approximants follow. Recently, in [41], and as previously communicated to us

[27], the conjecture of [6] was reformulated by Lieb and Seiringer as a question about

the traces of certain sums of words in two positive definite matrices.

Conjecture 4.4.3 (Bessis-Moussa-Villani). The polynomial p(t) = Tr [(A+ tB)m]

has all positive coefficients whenever A and B are n× n positive definite matrices.

The coefficient of tk in p(t) is the trace of Hm,k(A,B), the sum of all words

of length m in A and B, in which k B’s appear. Since its introduction in [6], many

partial results and substantial computational experimentation have been given [10, 15,

27, 30, 47], all in favor of the conjecture’s validity. However, despite much work, very

little is known about the problem, and it has remained unresolved except in very special

cases. Until recently, even the case m = 6 and n = 3 was unknown. In this case,

all coefficients, except Tr[H6,3(A,B)] were known to be positive [27]. The remaining

coefficient Tr[H6,3(A,B)] can be shown to be positive, but the proof requires notably

different methods [30]. The difficulty is that some summands of H6,3(A,B) can have

negative trace, precisely the types of words such as BABAAB considered above.

A recent advance on the conjecture (see [26]) has been the derivation of a pair

of equations satisfied by A and B with Euclidean norm 1 that minimize a coefficient

Tr[Hm,k(A,B)]: AHm−1,k(A,B) = A2Tr[AHm−1,k(A,B)]

BHm−1,k−1(A,B) = B2Tr[BHm−1,k−1(A,B)].

It is possible that some of the techniques developed here can be applied to these more

general types of word equations.

4.5 A Class of Uniquely Solvable Equations

In this section, we describe a class of words that are uniquely solvable with solutions that

can be explicitly constructed. These words generalize those found in Examples 4.2.1 and

4.2.2.
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Definition 4.5.1. A symmetric word is called totally symmetric if it can be expressed

as a composition of maps of the form

(1) πm,Bi(W ) = (WBi)mW , m a positive integer

(2) ϕm(W ) = Wm, m a positive integer

(3) CBi(W ) = BiWBi

applied to the letter X.

For example, the word W = B1X
2B2X

2B2X
2B1 may be expressed as the

composition, CB1 ◦ π2,B2 ◦ ϕ2(X). The utility of this definition becomes clear from the

following proposition.

Proposition 4.5.2. For every totally symmetric word S(X,Bi) and every positive def-

inite Bi and positive semidefinite P , the equation S(X,Bi) = P has a unique positive

semidefinite solution X.

Proof. We induct on the number of compositions involved in the word S; the base case

S = X being trivial. If S = ϕm(W ) for some word W , then W = P 1/m is a smaller

totally symmetric word equation and any solution X to S(X,Bi) = P satisfies it. A

similar statement holds when S = CBi(W ) (using Lemma 4.2.4), leaving us to deal with

πm,Bi .

Without loss of generality, we prove the result for the equation (XB)mX = P .

Assume that B and P are given and that X is a solution to (XB)mX = P . Set

Y = B1/2XB1/2, so that X = B−1/2Y B−1/2. Then,

P = (B−1/2Y B1/2)mB−1/2Y B−1/2 = B−1/2Y m+1B−1/2.

Therefore, Y m+1 = B1/2PB1/2, from which it follows that Y is uniquely determined as

(B1/2PB1/2)1/(m+1). Hence, X must be the positive semidefinite matrix

B−1/2(B1/2PB1/2)1/(m+1)B−1/2.

Finally, substituting this X into the original equation does verify that it is a solution.

This completes the proof.
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The shortest symmetric word equation without a known (closed-form) solution,

as above, is XBX3BX = P (although it is uniquely solvable [40]). An exploration of

which equations give rise to such explicit solutions is the focus of future work.

4.6 Reductions

The purpose of this section is to make some reductions that simplify the problem. Given

the nature of Theorem 4.1.2 and Conjecture 4.1.3, we begin by noticing that we may

assume our interlaced symmetric words are of the following form:

S = Xp1B1X
p2B2 · · ·B2X

p2B1X
p1 , (4.6.1)

in which the exponents pj are positive. This simplification is accomplished by observing

first, that powers of positive definite matrices are positive definite; and second, that

congruences of positive semidefinite P are positive semidefinite (Lemma 4.2.4).

We next establish that it suffices to verify our claims when P is invertible. We

begin with a useful lemma.

Lemma 4.6.1. Let p1, . . . , pk > 0 and let B1, . . . , Bk−1 be positive definite matrices.

Then, for any positive semidefinite matrix X, we have

kerX = kerXpkBk−1 · · ·B2X
p2B1X

p1 .

Proof. Set X = UDU∗ for a unitary matrix U and D = diag(λ1, . . . , λn), in which

λ1 ≥ . . . ≥ λn ≥ 0. Let Y = XpkBk−1 · · ·B2X
p2B1X

p1 , and notice that kerU∗XU =

kerU∗Y U if and only if kerX = kerY . Thus, it suffices to argue that

kerD = kerDpkBk−1 · · ·B2D
p2B1D

p1 ,

whenever the Bi are positive definite matrices.

Let m be the largest integer such that λm 6= 0, and for each i, let B̃i denote

the m × m leading principal submatrix of Bi, which will be positive definite (see, for

instance, [33, p. 472]). Additionally, set D̃ = diag(λ1, . . . , λm). A straightforward block

matrix multiplication then gives us that

DpkBk−1 · · ·B2D
p2B1D

p1 =

 D̃pkB̃k−1 · · · B̃2D̃
p2B̃1D̃

p1 0

0 0

 . (4.6.2)
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Since the leading principal m × m matrix in this direct sum is invertible, the claim

follows.

Using this lemma, we can prove the following reduction.

Theorem 4.6.2. If a symmetric word equation has a solution for every positive definite

Bi and P , then the symmetric word equation has a solution for every positive definite Bi

and positive semidefinite P .

Proof. Performing a uniform unitary similarity, we may prove the theorem with the

supposition that P is of the form,  P̃ 0

0 0

 ,
for a positive diagonal matrix P̃ of rank m. Lemma 4.6.1 implies that any positive

semidefinite solution X to the symmetric word equation S(X,Bi) = P has the same

block form as P . As in the lemma, let B̃i denote the m×m leading principal (positive

definite) submatrix of each Bi.

From these observations, it follows that positive semidefinite solutions X to

the equation S(X,Bi) = P correspond in a one-to-one manner with positive definite

solutions X̃ to the equation S(X̃, B̃i) = P̃ . This completes the proof.

The proof above also shows that the question of uniqueness found in Conjecture

4.1.3 may also be simplified.

Theorem 4.6.3. If a symmetric word equation has a unique solution for all positive

definite matrices Bi and P , then the symmetric word equation has a unique solution for

all positive definite Bi and each positive semidefinite P .

We close this section with an interesting interpretation of unique solvability.

Proposition 4.6.4. Fix positive definite matrices Bi in the unit ball and an interlaced

symmetric word S(X,Bi) whose equations are uniquely solvable. Then, the mapping

X 7→ S(X,Bi) from the set of positive semidefinite matrices in the (closed) unit ball to

its image is a homeomorphism.
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Proof. The assumptions imply that our map is bijective. Since the set of positive semidef-

inite matrices in the unit ball is compact, it follows that its inverse is also continuous.

4.7 Brouwer Mapping Degree

In this section, we give a brief overview of degree theory and some of its main implica-

tions. The bulk of this discussion is material taken from [16, 42, 65]. First we introduce

some notation. Let U be a bounded open subset of Rm. We denote the set of r-times

differentiable functions from U (resp. U) to Rm by Cr(U,Rm) (resp. Cr(U,Rm)) (when

r = 0, Cr(U,Rm) is the set of continuous functions). The identity function 1 satisfies

1(x) = x. If f ∈ C1(U,Rm), then the Jacobi matrix of f at a point x ∈ U is

Jf (x) =
[
∂fj

∂xi
(x)
]

1≤i,j≤m

and the Jacobi determinant (or simply Jacobian) of f at x is

det Jf (x).

The set of regular values of f is

RV(f) =
{
y ∈ Rm : ∀x ∈ f−1(y), Jf (x) 6= 0

}
and for y ∈ Rm, we set

Dr
y(U,Rm) =

{
f ∈ Cr(U,Rm) : y /∈ f(∂U)

}
.

A function deg : D0
y(U,Rm) → R which assigns to each y ∈ Rm and f ∈

D0
y(U,Rm) a real number deg(f, U,y) will be called a degree if it satisfies the following

conditions:

(1) deg(f, U,y) = deg(f − y, U, 0) (translation invariance).

(2) deg(1, U,y) = 1 if y ∈ U (normalization).

(3) If U1 and U2 are open, disjoint subsets of U such that y /∈ f(U \ (U1 ∪ U2)), then

deg(f, U,y) = deg(f, U1,y) + deg(f, U2,y) (additivity).
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(4) IfH(t) = tf+(1−t)g ∈ D0
y(U,Rm) for all t ∈ [0, 1], then deg(f, U,y) = deg(g, U,y)

(homotopy invariance).

Motivationally, one should think of a degree map as somehow “counting” the

number of solutions to f(x) = y. Condition (1) reflects that the solutions to f(x) = y

are the same as those of f(x)−y = 0, and since any multiple of a degree will satisfy (1)

and (3), condition (2) is a normalization. Additionally, (3) is natural since it requires

deg to be additive with respect to components. The following lemma gives a method to

show the existence of solutions to f(x) = y by calculating a degree.

Lemma 4.7.1. Suppose that f ∈ D0
y(U,Rm). If a degree satisfies deg(f, U,y) 6= 0, then

y ∈ f(U).

Proof. Using property (3) above with U1 = U and U2 = ∅, we must have that deg(f, ∅,y) =

0. Again using (3) with U1 = U2 = ∅, it follows that if y /∈ f(U) then deg(f, U,y) = 0.

The contrapositive is now what we want.

Of course, we need a theorem guaranteeing that a degree even exists.

Theorem 4.7.2. There is a unique degree deg. Moreover, deg(·, U,y) : D0
y(U,Rm) → Z.

When functions are differentiable, the degree can be calculated explicitly in

terms of Jacobians at solutions to the equation f(x) = y.

Theorem 4.7.3. Suppose that f ∈ D1
y(U,Rm) and y ∈ RV. Then the degree of f at y

with respect to U is given by

deg(f, U,y) =
∑

x∈f−1(y)

sgn det Jf (x),

where this sum is finite and we adopt the convention that
∑

x∈∅ = 0.

The final property of Brouwer degree that we will need is a stronger form

of homotopy invariance than that provided by Property (4). We say that a function

H : U × [0, 1] → Rm is a C0 homotopy between f, g ∈ Cr(U,Rm) if H is continuous on

U × [0, 1] and if H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ U .

Theorem 4.7.4. Suppose H is a C0 homotopy between f, g ∈ D0
y(U,Rm). Set ht(x) =

H(x, t) and suppose that for each t ∈ [0, 1], ht ∈ D0
y(U,Rm). Then deg(f, U,y) =

deg(g, U,y).
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4.8 Estimates of Solutions

This section is devoted to estimating the norms of positive definite solutions of symmetric

word equations. In particular, we show that the set of positive definite solutions to a

fixed symmetric word equation S(X,Bi) = P is bounded. Our estimate is the first step

in the proof of Theorem 4.1.5. In what follows, we will be using the spectral norm [33,

p. 295] on the set of n× n matrices, so that for positive semidefinite A, the norm of A

is just the largest eigenvalue of A.

Lemma 4.8.1. Fix an interlaced symmetric word S(X,Bi) and a number α ≥ 1. Then

there exists a constant C = CS,α depending only on S and α such that for all positive

definite matrices Bi with ‖Bi‖ ≤ 1 and ‖B−1
i ‖ ≤ α and all positive semidefinite matrices

P with ‖P‖ ≤ 1 we have the estimate

‖X‖ ≤ C (4.8.1)

for any solution X of the word equation S(X,Bi) = P .

Proof. We proceed by way of contradiction. If the statement is false, then for each

positive integer j there exist positive semidefinite matrices Xj , Pj and positive definite

matrices Bi,j such that S(Xj , Bi,j) = Pj , where ‖Bi,j‖ ≤ 1, ‖B−1
i,j ‖ ≤ α, ‖Pj‖ ≤ 1, and

‖Xj‖ ≥ j. By taking a subsequence, if necessary, we may assume that there are positive

semidefinite matrices Bi, P and X such that Bi,j → Bi, Pj → P , and ‖Xj‖−1Xj → X

as j →∞. It is clear that

‖X‖ = 1. (4.8.2)

Since ‖B−1
i,j ‖ is bounded uniformly in j, each Bi is positive definite. Let s be the degree

of S. Since ‖Xj‖ ≥ j for all j, if we let j →∞ in the equation

S(‖Xj‖−1Xj , Bi,j) = ‖Xj‖−sPj ,

it follows that

S(X,Bi) = 0.

Finally, an application of Lemma 4.6.1 givesX = 0, which contradicts (4.8.2) and finishes

the proof.
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Lemma 4.8.1 allows us to estimate ‖X‖ in terms of the norms of the Bi and

the norm of the word S(X,Bi).

Proposition 4.8.2. Fix an interlaced symmetric word S(X,B1, . . . , Bk) of the form

(4.6.1) with degree s and a number α ≥ 1. There exists a constant C = CS,α depending

only on S and α such that for all positive definite matrices Bi with ‖Bi‖‖B−1
i ‖ ≤ α and

any positive semidefinite X we have

‖X‖ ≤ C‖B1‖−
2
s · · · ‖Bk‖−

2
s ‖S(X,Bi)‖

1
s . (4.8.3)

Proof. Let C = CS,α be the constant in Lemma 4.8.1. By Lemma 4.6.1, if S(X,Bi) = 0,

then X = 0, and the bound is trivial. Otherwise, set B̃i = ‖Bi‖−1Bi, P = S(X,Bi), P̃ =

‖P‖−1P , and X̃ = ‖B1‖
2
s · · · ‖Bk‖

2
s ‖P‖−

1
sX. Noticing that ‖B̃−1

i ‖ = ‖Bi‖‖B−1
i ‖ ≤ α

and also that S(X̃, B̃i) = P̃ , we may apply Lemma 4.8.1 to get that

‖X̃‖ ≤ C. (4.8.4)

Substituting X̃ = ‖B1‖
2
s · · · ‖Bk‖

2
s ‖P‖−

1
sX into (4.8.4) and rearranging produces (4.8.3).

4.9 Calculation of Jacobi Matrices

From here on, we focus on real n × n matrices. For the purposes of this section, we

shall identify Mn = Mn(R) with Rd, where d = n2, by means of the vec operator. If

A = [aij ] ∈ Mn then vecA is the column vector obtained by stacking the columns of A

below one another:

vecA = [a11 · · · an1 a12 · · · · · · ann]T .

Recall that the Kronecker product of two n× n matrices A and B is the matrix

A⊗B =


a11B · · · a1nB

...
. . .

...

an1B · · · annB

 ∈ Md.

The following lemma can be found in [43, page 30]. We reproduce it here for

the reader’s convenience.
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Lemma 4.9.1. If A,B,X ∈ Mn, then

vec (AXB) = (BT ⊗A)vecX.

Proof. For a given matrix Q, let Qk denote the kth column of Q. Let B = [bij ]. Then

(AXB)k = AXBk

= A

(
n∑

i=1

bikXi

)
=
[
b1kA · · · bnkA

]
vecX.

Therefore,

vec(AXB) =


b11A · · · bn1A

...
. . .

...

b1nA · · · bnnA

 vecX = (BT ⊗A) vecX.

Suppose that Y (X) ∈ Mn is a function of the matrix variableX ∈ Mn. Following

[43], we define the derivative dY
dX of Y with respect to X to be the Jacobi matrix of vecY

with respect to vecX. That is, if [y1, . . . , yd]T = vecY and [x1, . . . , xd]T = vecX, then

dY

dX
=
[
∂yi

∂xj

]
.

Notice that it follows from Lemma 4.9.1 that

d(AXB)
dX

= BT ⊗A. (4.9.1)

Using (4.9.1), we may derive a matrix calculus version of the product rule (see [43] for

more on matrix calculus).

Proposition 4.9.2. Let Y (X) ∈ Mn and Z(X) ∈ Mn be functions of the matrix variable

X ∈ Mn. Then
d(Y Z)
dX

= (ZT ⊗ I)
dY

dX
+ (I ⊗ Y )

dZ

dX
. (4.9.2)
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Motivated by Theorem 4.7.3, we want to calculate the derivative dW
dX of a word

W = W (X,B1, . . . , Bk). To state the result, we need to introduce some notation. Let

W have degree s ≥ 1. Enumerate the occurrences of X in W (X,Bi) from left to right,

and for each j ∈ {1, . . . , s} let WL
j (X,Bi) be the portion of W (X,Bi) that appears to

the left of the jth occurrence of X. For instance, if

W (X,B1, B2) = B3
2XB

2
1B2XB2B1X

2B2X,

then WL
4 (X,B1, B2) = B3

2XB
2
1B2XB2B1X. We adopt the convention that WL

1 = I if

X is the first letter of the word. In a similar way we define WR
j (X,Bi) to be the portion

of W (X,Bi) that appears to the right of the jth appearance of X. Notice that

W (X,Bi) = WL
j (X,Bi)XWR

j (X,Bi)

for any j = 1, . . . , s.

Proposition 4.9.3. Let W = W (X,Bi) be a word of degree s, and Bi ∈ Mn. Then

dW

dX
=

s∑
j=1

WR
j (X,Bi)T ⊗WL

j (X,Bi). (4.9.3)

Proof. We proceed by induction on the length of W . For the words X and BX (B =

B1, . . . , Bk), (4.9.3) is a special case of (4.9.1). Now suppose that (4.9.3) holds for a fixed

word W = W (X,Bi) of degree s. Pick B ∈ {B1, . . . , Bk} and set

W (X,Bi) = W (X,Bi)B.

Then (4.9.1) and (4.9.2) imply that

dW

dX
= (BT ⊗ I)

dW

dX

= (BT ⊗ I)
s∑

j=1

WR
j (X,Bi)T ⊗WL

j (X,Bi)

=
s∑

j=1

(WR
j (X,Bi)B)T ⊗WL

j (X,Bi)

=
s∑

j=1

W
R
j (X,Bi)T ⊗W

L
j (X,Bi),
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so formula (4.9.3) holds for W .

Next set W̃ (X,Bi) = W (X,Bi)X. Appealing again to (4.9.1) and (4.9.2), we

compute:

dW̃

dX
= (XT ⊗ I)

dW

dX
+ (I ⊗W (X,Bi))

= (XT ⊗ I)
s∑

j=1

WR
j (X,Bi)T ⊗WL

j (X,Bi) + (I ⊗ W̃L
s+1)

=
s+1∑
j=1

W̃R
j (X,Bi)T ⊗ W̃L

j (X,Bi),

and so (4.9.3) holds for W̃ . This completes the induction and the proof.

We next write down expression (4.9.3) for some explicit interlaced symmetric

words, beginning with the most basic one.

Example 4.9.4. For a positive integer s, the Jacobi matrix of vecXs with respect to

vecX is given by
dXs

dX
=

s∑
j=1

(Xs−j)T ⊗Xj−1. (4.9.4)

In particular, since the Kronecker product of two positive (semi)definite matrices is also

positive (semi)definite (see [34, p. 245]), dXs

dX is positive (semi)definite whenever X is

positive (semi)definite.

Example 4.9.5. Consider the symmetric word S in two letters given by

S(X,B) = XBX2B3X2BX.

If B is positive definite and X is symmetric, then

dS

dX
= XBX2B3X2B ⊗ I +XBX2B3X ⊗XB +XBX2B3 ⊗XBX

+XBX ⊗XBX2B3 +XB ⊗XBX2B3X + I ⊗XBX2B3X2B.
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4.10 The Brouwer Degree of Symmetric Word Equations

Our proof of Theorem 4.1.5 consists of two main steps. In the first, we calculate the

degree of the simple map ϕs(X) = Xs and show that it is 1. And in the second, we

create a homotopy from the function f(X) = S(X,Bi) to ϕs(X) and apply Theorem

4.7.4. Before initiating our proof, we need to identify the set of real positive definite

matrices with an open set in Euclidean space. To this end, we identify the set Symn

of real symmetric matrices with Rm, in which m = 1
2n(n + 1), by identifying a real

symmetric matrix A = [aij ] with the point

µ(A) = (a11, . . . , an1, a22, . . . , an2, . . . , ann).

More precisely, if A ∈ Mn then we define µ(A) = (y1, . . . , ym), where

y 1
2
(2n−j)(j−1)+i = aij , 1 ≤ j ≤ i ≤ n.

The restriction µ|Symn
is a linear isomorphism from Symn onto Rm. We denote by ν the

inverse of µ|Symn
. Let

O = {µ(X) | X is positive definite}.

The set of positive definite matrices is therefore identified with the open subset O ⊂ Rm,

and the set of positive semidefinite matrices is identified with the set O.

Define a function Ps : Rm → Rm by

Ps = µ ◦ ϕs ◦ ν.

Since ϕs maps Symn into itself, it follows that Ps(µ(X)) = µ(Xs) for every symmetric

matrix X. We intend to show that detJPs(µ(X)) > 0 when X is positive definite.

First, however, we need a lemma describing a relationship between eigenvalues of Jacobi

matrices for functions f : Rd → Rd and their restrictions f̃ to certain subspaces. In what

follows, the set of eigenvalues of a matrix H is denoted by σ(H).

Lemma 4.10.1. Let f : Rd → Rd be a C1 map and V ⊆ Rd be a linear subspace of Rd

such that f(V ) ⊆ V . Let π : Rm → V be a linear isomorphism, and let f̃ : Rm → Rm be

given by f̃ = π−1 ◦ f ◦ π. Then for every x ∈ V , we have

σ(J ef (π−1(x))) ⊆ σ(Jf (x)).
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In particular, if x ∈ V and Jf (x) is positive definite, then J ef (π−1(x)) has positive

eigenvalues.

Proof. Let {e1, . . . , ed} be the standard basis for Rd. By choosing a linear change of

variables u : Rd → Rd such that u(V ) = span{e1, . . . , em} and considering the C1 map

g = u ◦ f ◦ u−1, we may reduce to the case that V = span{e1, . . . , em}. We may likewise

assume that π(z1, . . . , zm) = (z1, . . . , zm, 0, . . . , 0).

Write f = (f1, . . . , fd) and let x ∈ V . If j ≤ m < k, we have

fk(x + tej) = 0 for all t ∈ R

since f(V ) ⊆ V . Therefore,

∂fk

∂xj
(x) = 0 for all j ≤ m < k. (4.10.1)

It follows that Jf (x) has the block form

Jf (x) =

J0 ∗
0 ∗

 ,
in which J0 is the m×m leading principle submatrix of Jf (x). In particular, this implies

that σ(J0) ⊂ σ(Jf (x)). It is straightforward to verify that

f̃(x1, . . . , xm) = (f1(x1, . . . , xm, 0, . . . , 0), . . . , fm(x1, . . . , xm, 0, . . . , 0)),

from which it follows that J ef (π−1(x)) = J0. This proves the lemma.

Lemma 4.10.2. At any positive definite matrix X, the Jacobi matrix JPs(µ(X)) of the

map Ps has positive eigenvalues. In particular, det JPs(µ(X)) > 0.

Proof. Let V = {vecX | X ∈ Symn} be the linear subspace of Rd identified with Symn.

The function P̃s : Rd → Rd defined by

P̃s(vecX) = vecXs

maps V into itself. Let π = vec ◦ ν, and notice that π : Rm → V is a linear isomorphism

and that Ps = π−1 ◦ P̃s ◦ π. By Example 4.9.4, if X is a positive definite matrix, then

J ePs
(vecX) = dXs/dX is also positive definite. Applying Lemma 4.10.1, we conclude

that the Jacobi matrix JPs(π−1(vecX)) = JPs(µ(X)) has positive eigenvalues at any

positive definite X.
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Proposition 4.10.3. Let s be a positive integer, P a positive definite matrix, and V ⊂ O
a bounded open set containing µ(P 1/s). Let g be the function Ps restricted to O. Then

deg(g,V, µ(P )) = 1.

Proof. Lemma 4.10.2 implies that µ(P ) is a regular value for g. Using Theorem 4.7.3

and Lemma 4.10.2, we calculate:

deg(g,V, µ(P )) =
∑

x∈g−1(µ(P ))

sgn det Jg(x) = sgn detJg(µ(P 1/s)) = 1.

We are now ready to calculate the Brouwer degree of a general symmetric word

equation.

Proof of Theorem 4.1.5. From the discussion in Section 4.6 we may assume that our

interlaced symmetric word S(X,B1, . . . , Bk) is of the form (4.6.1). Fix positive definite

matrices B1, . . . , Bk, a positive definite matrix P and set f(X) = S(X,Bi). Also set

f̃ = µ ◦ f ◦ ν. We will show that there is a bounded, open subset V ⊂ O such that for

all bounded, open U ⊂ O with V ⊂ U we have

deg(f̃ ,U , µ(P )) = 1. (4.10.2)

By Proposition 4.8.2, there exists a constant K independent of t such that any

positive definite solution X of the equation S(X, tBi + (1 − t)I) = P has ‖X‖ < K.

Indeed, if

α = max
1≤i≤k, 0≤t≤1

‖tBi + (1− t)I‖ · ‖(tBi + (1− t)I)−1‖ <∞

and

β = min
1≤i≤k, 0≤t≤1

‖tBi + (1− t)I‖ > 0,

then we must have

‖X‖ ≤ CS,αβ
− 2k

s ‖P‖
1
s <∞.

Let V = VK be the open set of positive definite matrices with norm less than

K. For each t ∈ [0, 1], let ft be the function from the positive semidefinite matrices
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into itself given by ft(X) = S(X, tBi + (1− t)I). From our choice of K, it follows that

ft(X) 6= P when X is positive definite with ‖X‖ = K. Moreover, if X is singular, then

taking a determinant shows that ft(X) 6= P . Thus P 6∈ ft(∂V ) for each t ∈ [0, 1].

Let V = µ(V ) and f̃t = µ ◦ ft ◦ ν. Then if V ⊂ U ⊂ O, we have µ(P ) 6∈ f̃t(∂U)

for t ∈ [0, 1]. Since (x, t) 7→ f̃t(x) is continuous, Theorem 4.7.4 implies that

deg(f̃0,U , µ(P )) = deg(f̃1,U , µ(P )).

Since f̃0 = Ps and f̃1 = f̃ , (4.10.2) now follows from Proposition 4.10.3.

4.11 Proof of Theorem 4.1.4

The following corollary of Theorem 4.1.5 will allow us to prove Theorem 4.1.4.

Corollary 4.11.1. Fix an interlaced symmetric word S and let f̃ = f̃S be as in the proof

of Theorem 4.1.5. Suppose there is a positive definite matrix X0 such that

det J ef (µ(X0)) < 0.

Then the symmetric word equation

S(X,Bi) = S(X0, Bi)

has at least two real solutions X.

Proof. Let X0 be as in the statement of the corollary, and set P = S(X0, Bi). If µ(P )

is a regular value of f̃ , then Theorems 4.1.5 and 4.7.3 imply that there must be at least

two solutions X1 and X2 of S(X,Bi) = P such that

det J ef (µ(Xi)) > 0, i = 1, 2.

If µ(P ) is not a regular value of f̃ , then there exists a positive definite matrix X1 such

that S(X1, Bi) = P and

J ef (µ(X1)) = 0.

Since J ef (µ(X1)) 6= J ef (µ(X0)), it follows that X0 6= X1.
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Let S and f̃ be as in Corollary 4.11.1. We outline a method for obtaining the

smaller Jacobian matrix J ef (µ(X)) from the larger Jacobian matrix dS/dX. To simplify

the bookkeeping of indices, define

α(i, j) = n(j − 1) + i, i, j = 1, . . . , n

and

β(k, l) =
1
2
(2n− l)(l − 1) + k, 1 ≤ l ≤ k ≤ n.

Thus if X = [xij ] ∈ Mn, then the α(i, j)th entry of vecX is equal to xij , i, j = 1, . . . , n.

Likewise, the β(k, l)th entry of µ(X) is xkl, 1 ≤ l ≤ k ≤ 1.

The Jacobi matrix J ef of the map

f̃ = µ ◦ (X 7→ S(X,Bi)) ◦ ν

= (µ ◦ vec−1) ◦ (vec ◦ (X 7→ S(X,Bi)) ◦ vec−1) ◦ (vec ◦ ν)

is given by

J ef (µ(X)) = M(dS/dX)N,

in which M ∈ Mm×d is the matrix representation of µ ◦ vec−1 and N ∈ Md×m is the

matrix representation of vec ◦ ν. It is easy to see that if 1 ≤ i, j ≤ n and 1 ≤ l ≤ k ≤ n,

the (α(i, j), β(k, l)) entry of N is1 if i = k, j = l or i = l, j = k

0 otherwise

and the (β(k, l), α(i, j)) entry of M is1 if i = k, j = l

0 otherwise.

We are now ready to prove the main result of this section.

Proof of Theorem 4.1.4. Let A1 and B1 be as in Section 4.4, and let S be the symmetric

word

S(X,B) = XBX2B3X2BX.
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Let f(X) = S(X,A1) and f̃ = µ ◦ f ◦ ν. Using Maple1, we calculate

det J ef (B1) = −633705909477329213831177437148144640 < 0.

By Corollary 4.11.1, it follows that the symmetric word equation

S(X,A1) = S(B1, A1)

has at least two distinct real positive definite solutions X.

As a final remark, we note that there are many other words which can be shown

to have multiple solutions using the techniques found in the proof of Theorem 4.1.4. We

list a few of them below:

XBXkBX, 9 ≤ k ≤ 20

XBXB2XkB2XBX, 2 ≤ k ≤ 16

XBXkB3XkBX, 2 ≤ k ≤ 15

XB2XBXkBXB2X, 6 ≤ k ≤ 40.

In general, we do not know how to characterize those equations which give rise

to unique solutions.

1Code that performs this calculation is available at http://math.berkeley.edu/∼chillar.
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