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1. Introduction

Consider the problem [1]:

minimize f0(x)

subject to fi(x) ≤ 0

hi(x) = 0.

where f0(x) is a convex function and the hi(x) are affine. Set D to be the intersection of
the domains of the fi. We set p∗ to be the solution to this minimization problem.

Define the Lagrangian associtated to the problem to be

L(x, λ, ν) = f0(x) +
m∑

i=1

λifi(x) +

p∑
i=1

νihi(x).

The λ and ν are called dual variables.
We would like to minimize this function over the domain:

g(λ, ν) := inf
x∈D

L(x, λ, ν).

We define the domain of g to be those points for which g is not −∞:

dom g = {(λ, ν) : g(λ, ν) > −∞}.

Theorem 1.1. When λ ≥ 0, we have

g(λ, ν) ≤ p∗.

Proof. Clearly, g(λ, ν) ≤ L(x, λ, ν) for all x ∈ D. In particular, for feasible x̃, we have

g(λ, ν) ≤ f0(x̃),

since λ are all nonnegative and hi(x̃) = 0. �

It follows that we can obtain a lower bound on p∗ by solving the following optimiza-
tion problem, called the Lagrange dual problem associated to the original optimization
problem:

maximize g(λ, ν)

subject to λ ≥ 0.

We will denote the answer to this problem as d∗. Of course, we have

d∗ ≤ p∗,
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a property we call weak duality. This turns out to be a convex optimization problem since
the objective to be maximized is concave and the constraint is convex. This concavity
can be proved directly using the fact that the infimum of a sum is greater than or equal
to the sum of the infimums.

2. Strong Duality

Under mild conditions, we show that both optimization problems have the same solu-
tion; that is, d∗ = p∗.

To begin, we define the set

A = {(u, v, t) : ∃x ∈ D, fi(x) ≤ ui, i = 1, . . . ,m, hi(x) = vi, i = 1, . . . , p, f0(x) ≤ t},
which is convex since each of the fi(x) are convex functions.

The optimal solution to our original problem is:

p∗ = inf {t : (0, 0, t) ∈ A}.
Next, notice that if λ ≥ 0,

g(λ, ν) = inf {(u, v, t)(λ, ν, 1)T : (u, v, t) ∈ A}.
If λ ≥ 0 and ν are given and g(λ, ν) is finite, then

(2.1) (u, v, t)(λ, ν, 1)T ≥ g(λ, ν)

defines a (nonvertical) supporting hyperplane (really, half-space) to A.
In particular, since (0, 0, p∗) ∈ bd A, we have

p∗ = (λ, ν, 1)T (0, 0, p∗) ≥ g(λ, ν).

To rephrase in this language, Strong duality holds if and only if we have equality in
equation (2.1).

3. Slater’s constraint qualification

Definition 3.1 (Slater’s Condition). There exists an x̃ ∈ relint D with fi(x̃) < 0 for
i = 1, . . . ,m and Ax̃ = b.

In other words, there exists a strictly feasible point.

Theorem 3.2. Slater’s condition implies strong duality.

Proof sketch. Assume for simplicity that relint D = int D and that A has full rank p.
Consider the following (convex) set

B = {(0, 0, s) ∈ Rm × Rp ×R : s < p∗},
which is obviously disjoint from A.

By the separating hyperplane theorem, there exists (λ̃, ν̃, µ) 6= 0 and α such that

(u, v, t) ∈ A ⇒ uλ̃T + vν̃T + tµ ≥ α,

and
(u, v, t) ∈ B ⇒ uλ̃T + vν̃T + tµ ≤ α,

This implies that λ̃ ≥ 0, by the first equation (since A is closed under u getting larger),
and µ ≥ 0, by the second, which says that µt ≤ α for all t < p∗ and thus µp∗ ≤ α.
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For any x ∈ D, we have

(f1(x), . . . , fm(x), h1(x), . . . , hp(x), f0(x)) ∈ A,
and therefore by the first inequality, it follows that

(3.1)
m∑

i=1

λ̃ifi(x) + ν̃(Ax− b) + µf0(x) ≥ α ≥ µp∗.

We proceed in two cases.
Case 1: µ > 0. Dividing (3.1) by µ, we obtain

L(x, λ̃/µ, ν̃/µ) ≥ p∗,

for all x ∈ D. Thus, minimizing over x, it follows that g(λ, ν) ≥ p∗ where λ = λ̃/µ and
ν = ν̃/µ. By weak duality, we have g(λ, ν) = p∗.

Case 1: µ = 0. Using (3.1), it follows that for x̃ satisfying Slater’s condition, we have
m∑

i=1

λ̃ifi(x̃) ≥ 0,

and therefore λ̃ = 0 since all fi(x̃) < 0 and λ̃ ≥ 0. From (λ̃, ν̃, µ) 6= 0 and λ̃ = µ = 0, we
conclude that ν̃ 6= 0. Thus, (3.1) implies that

ν̃(Ax− b) ≥ 0.

By assumption, ν̃(Ax̃ − b) = 0, and since x̃ ∈ int D, it follows that there exists a per-
turbation x ∈ D such that ν̃(Ax − b) < 0 unless ν̃A = 0. This contradicts the fact that
rank(A) = p. �
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