ERRATA TO CYCLIC RESULTANTS

CHRISTOPHER J. HILLAR

1. Errata

In Theorem 1.1 of [1], a characterization was given for when two univariate polynomials share the same sequence of nonzero cyclic resultants. As pointed out to me by Ignacio Fernández Rúa [2], this description is partially incomplete. The corrected statement should be given as follows.

Theorem 1.1. Let f and g be polynomials in $\mathbb{C}[x]$. Then, f and g generate the same sequence of nonzero cyclic resultants if and only if there exist $u, v \in \mathbb{C}[x]$ with $u(0) \neq 0$ and nonnegative integers l_{1}, l_{2} such that $\operatorname{deg}(u) \equiv l_{2}-l_{1}(\bmod 2)$, and

$$
\begin{aligned}
& f(x)=(-1)^{l_{2}-l_{1}} x^{l_{1}} v(x) u\left(x^{-1}\right) x^{\operatorname{deg}(u)} \\
& g(x)=x^{l_{2}} v(x) u(x)
\end{aligned}
$$

This change does not affect any of the other results in [1]. The cause for the missing case (when $l_{1} \not \equiv l_{2}(\bmod 2)$) stems from a minor miscalculation of the divisor of a certain rational function. For completeness, we state the correction here. All of the following equation references are taken from [1]. Let $f=x^{l} h \in \mathbb{C}[x]$ in which $h(0) \neq 0$ and h has degree d. Then, from (3.2), the cyclic resultants of f are given by $(-1)^{l} r_{m}(h)$. Examining equation (3.4) following Corollary 3.3, it follows that the divisor of G_{d} for f is given by the divisor of the rational function

$$
\exp \left(-\sum_{m=1}^{\infty} r_{m}(f) \frac{z^{m}}{m}\right)=\left[\exp \left(-\sum_{m=1}^{\infty} r_{m}(h) \frac{z^{m}}{m}\right)\right]^{(-1)^{l}}
$$

Let $\alpha_{1}, \ldots, \alpha_{d}$ be the roots of h. By the discussion for polynomials without roots of zero found at the beginning of Section 4 , it follows that the divisor of G_{d} for f is

$$
(-1)^{l}\left[a_{0}^{-1}\right] \prod_{i=1}^{d}\left(\left[\alpha_{i}^{-1}\right]-[1]\right) .
$$

With this correction in hand, it is straightforward to modify the proof of Theorem 1.1 and derive the missing case in the characterization.

References

[1] C. Hillar, Cyclic resultants, J. Symb. Comp. 39 (2005), 653-669.
[2] I.F. Rúa, private communication, 2005.
Department of Mathematics, University of California, Berkeley, CA 94720.
E-mail address: chillar@math.berkeley.edu

[^0]
[^0]: 1991 Mathematics Subject Classification. Primary 11B83, 14Q99; Secondary 15A15, 20 M 25.
 Key words and phrases. cyclic resultant, binomial factorization, group rings, toral endomorphisms.

