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Abstract. We give a short and elementary proof of a theorem of Procesi,

Schacher and (independently) Gondard, Ribenboim that generalizes a famous
result of Artin. Let A be an n × n symmetric matrix with entries in the

polynomial ring R[x1, . . . , xm]. The result is that if A is postive semidefinite

for all substitutions (x1, . . . , xm) ∈ Rm, then A can be expressed as a sum of
squares of symmetric matrices with entries in R(x1, . . . , xm). Moreover, our

proof is constructive and gives explicit representations modulo the scalar case.

We shall give an elementary proof of the following theorem. Recall that a real
matrix is positive semidefinite if it is symmetric with all nonnegative eigenvalues.

Theorem 1. Let A be a symmetric matrix with entries in R[x1, . . . , xm]. If A is
postive semidefinite for all substitutions (x1, . . . , xm) ∈ Rm, then A can be expressed
as a sum of squares of symmetric matrices with entries in R(x1, . . . , xm).

This generalizes the following famous result of Artin on nonnegative polynomials;
it is the starting point for a large body of work relating positivity and algebra.

Theorem 2 (Artin). If f ∈ R[x1, . . . , xm] is nonnegative for all substitutions
(x1, . . . , xm) ∈ Rm, then f is a sum of squares of rational functions in R(x1, . . . , xm).

Theorem 1 was originally proved in [3] and (within a general framework) in [7],
although a formulation over a number field was already considered in [2]. Like
Artin’s result, it guarantees algebraic certificates to (matrix) nonnegativity. How-
ever, the known proofs are nonconstructive and employ either model theory [3] or
ultraproducts [7]. In contrast, we use only basic facts about real closed fields and
linear algebra to give an elegant proof of Theorem 1. Our argument is also explicit,
assuming one can construct scalar sums of squares representations in Theorem 2.

Recall that a field F is real if −1 is not a sum of squares in F , and a real closed
field R is a real field such that any algebraic extension of R that is real must be
equal to R. Real closed fields have a unique ordering, the nonnegative elements
being the squares. For instance, R(x1, . . . , xm) is a real field and R is real closed. A
principal minor of a matrix is a determinant of a submatrix determined by the same
row and column indices. The set of symmetric matrices over R with all principal
minors nonnegative coincides with the set of positive semidefinite matrices (see for
example [4, p. 405]), a fundamental relationship we exploit below. We will prove
the following generalization of Theorem 1 to the setting of real fields.
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Theorem 3. Let F be a real field and let A be a symmetric matrix with entries in
F . If the principal minors of A can be expressed as sums of squares in F , then A
is a sum of squares of symmetric matrices with entries in F .

To see see how Theorem 1 follows from Theorem 3, consider a principal minor
p(x1, . . . , xm) ∈ R[x1, . . . , xm] of the matrix A. By assumption, it will be nonnega-
tive for all substitutions (x1, . . . , xm) ∈ Rm, and therefore, Artin’s theorem implies
that it is a sum of squares of rational functions. We may now invoke Theorem 3.

As another application, consider positive semidefinite matrices A ∈ Qn×n. Stan-
dard matrix theory allows one to write A = B2 for a symmetric B with entries
that are algebraic numbers; however, Theorem 3 tells us that A is actually a sum
of squares of rational matrices. This follows since any nonnegative rational number
a/b = ab/b2 can be written as a sum of four rational squares by Lagrange’s theorem.

To prove Theorem 3, we begin with a lemma. For the basic theory of real
closed fields R we will need, we refer the reader to [5, 6]. The main observation
is that a symmetric matrix A ∈ Rn×n that has all nonnegative principal minors is
diagonalizable over R with nonnegative eigenvalues, just as is the case for R.

Lemma 4. Suppose that A is a matrix satisfying the hypotheses of Theorem 3.
Then the minimal polynomial p(t) ∈ F [t] of A is of the form:

(1) p(t) =
s∑

i=0

(−1)s−iait
i = ts − as−1t

s−1 + · · ·+ (−1)sa0

for ai that are sums of squares of elements of F . Moreover, a1 6= 0.

Proof. Let p(t) be the minimal polynomial of A, expressed in the form indicated
by (1). We first make the following observation. Let R be any real closure of F ;
this induces an ordering on R, in which the principal minors of A are nonnegative
(they are sums of squares). Since A is diagonalizable over R and has nonnegative
eigenvalues, it follows that each ai ≥ 0 and also that p(t) has no repeated roots.

Suppose now that some ai was not a sum of squares in F . Then there is an
ordering of F with ai negative. Let R be a real closure of F that extends the
ordering on F . By above, ai is nonnegative, a contradiction. To verify the second
claim, first notice that t2 does not divide p(t) so that a0 and a1 cannot both be 0.
In a real closure of F , the coefficient a1 is a sum of products of (nonnegative) roots
of p(t). It follows that if a1 = 0, we have (−1)sa0 = p(0) = 0. Thus, a1 6= 0. �

Proof of Theorem 3. Let A be a symmetric matrix satisfying the hypotheses of
Theorem 3. Also, let p(t) be the minimal polynomial for A, which has the form
prescribed by Lemma 4. For notational simplicity, we assume that s is odd, although
the argument is the same when s is even. Since p(A) = 0, it follows that

(As−1 + as−2A
s−3 + · · ·+ a1I)A = as−1A

s−1 + as−3A
s−3 + · · ·+ a0I.

Set B = As−1 + · · · + a1I, which is invertible (since a1 6= 0, in any real closure of
F , it is diagonalizable with strictly positive eigenvalues). Therefore, we have

(2) A = B ·
(
as−1B

−2As−1 + as−3B
−2As−3 + · · ·+ a0B

−2
)
.

Since B is a sum of squares and B and B−1 commute with A, the result follows. �

Notice that our argument gives a commuting sum of squares representation, the
existence of which was also observed in [7]. We close with two examples to illustrate
the construction from our proof.
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Example 5. The following symmetric matrix is always positive semidefinite:

A =
[

1 x1x2

x1x2 1 + x4
1x

2
2 + x2

1x
4
2

]
.

However, it is not a sum of squares of matrix polynomials. To see this, let x =
[1,−1]T and suppose that A is a sum of polynomial squares; then so is the poly-
nomial f(x1, x2) = xT Ax = 2 + x4

1x
2
2 + x2

1x
4
2 − 2x1x2. Thus, we can express

f =
∑n

i=1 p2
i for some polynomials pi with deg(pi) ≤ 3. Comparing coefficients, pi

cannot contain the monomials x3
1, x3

2, x2
1, x2

2, x1x2, x1, or x2 so that we can write
pi = ai + bix

2
1x2 + cix1x

2
2 for some ai, bi, ci ∈ R. However, then we cannot produce

the term −2x1x2 in f , a contradiction. Similarly, det(A) is not a sum of polynomial
squares. It is, however, a sum of rational squares since (x2

1 + x2
2) det(A) equals:(

x2 −
1
2
x2

1x2

)2

+
(

x1 −
1
2
x1x

2
2

)2

+ 2
(

x1x2 −
1
2
x1x

3
2 −

1
2
x3

1x2

)2

+

3
4

(
x2

1x
4
2 + x4

1x
2
2

)
+

1
2

(
x1x

3
2 + x3

1x2

)2
.

Since A2 − tr(A)A + det(A)I = 0, we have the rational squares representation:

A = tr(A)
[(

tr(A)−1A
)2

+ det(A)
(
tr(A)−1I

)2
]
. �

Example 6. The following matrix is positive semidefinite for all substitutions:

A =

x2
1 + 2x2

3 −x1x2 −x1x3

−x1x2 x2
2 + 2x2

1 −x2x3

−x1x3 −x2x3 x2
3 + 2x2

2

 ,

but it is not a sum of polynomial squares [1]. Its minimal polynomial has coefficients

a2 = 3x2
3 + 3x2

2 + 3x2
1, a1 = 2x4

2 + 6x2
1x

2
3 + 6x2

1x
2
2 + 2x4

1 + 2x4
3 + 6x2

2x
2
3,

a0 = 4x4
1x

2
2 + 4x2

3x
4
2 + 4x4

3x
2
1 + 4x2

3x
2
1x

2
2,

which are all sums of squares. From formula (2), we have

A = (A2 + a1I)
[
a2

(
A + a1A

−1
)−2

+ a0

(
A2 + a1I

)−2
]
. �
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