
Summary

Often in mathematics, a theoretical investigation leads to a system of polynomial equa-
tions. Generically, such systems are difficult to solve. In applications, however, the equa-
tions come equipped with additional structure that can be exploited. It is crucially impor-
tant, therefore, to develop techniques for studying structured polynomial systems. Hillar
proposes to work on a wide range of problems that arise from other areas of mathematics
and from the physical sciences. The intellectual merit of this research is two-fold: on the
one hand, Hillar is advancing the theoretical understanding of fundamental mathematical
objects; and on the other, he is developing algorithms for performing computations with
them. Hillar has collaborated with 13 researchers, many of whom are near the beginning
of their careers. In several cases, he has taken a leadership role with these younger peo-
ple. These interactions broadly impact mathematics by uniting groups in different fields
towards common goals as well as by preparing the next generation of mathematicians.

Numerical algorithms from semidefinite programming have become useful in many ap-
plications. A guiding open problem is to remove the need for approximations in these
methods, while preserving their efficiency. Hillar proposes to solve this problem, building
on recent success. A specific application is the Bessis-Moussa-Villani trace conjecture
in theoretical physics, where Hägele and Klep-Schweighofer are carrying out a program
Hillar has suggested. Hillar will interact further with these researchers on this difficult
problem. He also plans to continue his collaboration with the young research group of
Sottile on a broad number of questions in the Schubert calculus. This includes designing
and maintaining large-scale computational experiments on the secant conjecture.

In chemistry and algebraic statistics, it is important to determine the algebraic relations
between experimental measurements. Sturmfels has asked whether, up to symmetry, there
are finitely many of them that generate the others. Aschenbrenner and Hillar answered
this question for a special case, and Hillar proposes to continue the collaboration to solve
this problem more generally. He will also work to provide a theoretical framework for
an algorithm that they have been developing. Cyclic resultants count periodic points for
systems in topological dynamics and Lagrangian mechanics. Sturmfels and Zworski have
a precise conjecture for the number of resultants needed to recover the spectrum of such
systems, and Hillar will work on a program to prove this conjecture. He will also continue
collaboration with Lauve on binomial factorizations in group algebras.

Inspired by the work of Bayer, de Loera, and Lovász, Hillar and Windfeldt gave an alge-
braic characterization of uniquely colorable graphs using Gröbner bases. Hillar proposes
to continue this commutative algebra approach to graph theory with the team of de Loera,
Margulies, and Woo. This involves proving Nullstellensatz complexity bounds for com-
puting chromatic numbers. Gröbner bases also appear in ongoing work with Garcia that
is related to a conjecture of Casas-Alvero. In this application, a family of Gröbner bases
seem to index partial sums of Catalan numbers, and Hillar will study this combinatorial
relationship further.

Finally, Hillar proposes to complete a research program with Levine on word equa-
tions. While studying the BMV conjecture, Hillar and Johnson encountered symmetric
word equations in positive definite letters. Solutions to such equations are potential
counterexamples to the conjecture. This led Hillar to study word equations in uniquely
divisible groups and to formulate an Abel theorem in this setting. He proposes to finish
the remaining steps of this approach with Levine.
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Proposed Research

The following proposal describes several interrelated lines of research in which I will
actively participate during the tenure of this proposal. The topics include recent trends
in optimization and real algebraic geometry, finiteness questions in commutative algebra,
applications of Gröbner bases to graph theory and combinatorics, and progress towards
noncommutative Abel theorems. Although these topics are broad, a common theme
emerges: exploit structure in novel ways. Moreover, the techniques I have been developing
are constructive and use symbolic computation in a fundamental way. I believe this is the
new way forward in mathematics, where “algorithm” and “proof” will be as inseparable
to mathematicians as “experiment” and “conjecture” have been to scientists.

1. Real Algebraic Geometry and Optimization

1.1. Rational sums of squares. In recent years, techniques from semidefinite program-
ming have produced numerical algorithms for expressing positive semidefinite polynomi-
als as sums of squares. These algorithms have many applications in optimization, control
theory, quadratic programming, and matrix analysis [61, 62, 63, 64, 65]. Moreover, such
representations aid in the computation of the real locus of a polynomial. For a non-
commutative application of these techniques to a famous trace conjecture, see the next
section, which discusses the papers [13, 30, 34, 46, 51, 74].

One major drawback with these algorithms is that their output is, in general, numerical.
For many applications, however, exact polynomial identities are needed. In this regard,
Sturmfels has asked the following question.

Question 1.1 (Sturmfels). If f ∈ Q[x1, . . . , xn] is a sum of squares in R[x1, . . . , xn], then
is f also a sum of squares in Q[x1, . . . , xn]?

This question has a positive answer in the univariate case due to results of Landau [50]
and Pourchet [66]. It follows from a famous theorem of Artin [67] that if f ∈ Q[x1, . . . , xn]
is a sum of squares of rational functions in R(x1, . . . , xn), then it is a sum of squares in
Q(x1, . . . , xn). Moreover, from the work of Voevodsky on the Milnor conjectures, it is
known that 2n+2 such squares suffice [49]. However, the transition from rational functions
to polynomials is often a very delicate one. For instance, not every polynomial that is a
sum of squares of rational functions is a sum of squares of polynomials [67].

More generally, Sturmfels is interested in the algebraic degree [60] of maximizing a linear
functional over the space of all sum of squares representations of a given polynomial that
is a sum of squares. In the special case of Question 1.1, a positive answer signifies an
algebraic degree of 1 for this optimization problem.

General theory reduces Question 1.1 to one involving real algebraic numbers. Recently,
I made progress in the multivariate case when the coefficients lie in a totally real number
field K. My main theorem in [33] is the following.

Theorem 1.2. Let K be a totally real number field with Galois closure L and let R be a
commutative Q-algebra. If f ∈ R is a sum of m squares in R ⊗Q K, then f is a sum of

4m · 2[L:Q]
(

[L:Q]+1
2

)
squares in R.

My proof of Theorem 1.2 was constructive. It is known [15] that arbitrarily large
numbers of squares are necessary to represent any sum of squares over R[x1, . . . , xn],
n > 1, making a fixed bound (for a given n) as in the rational function case impossible.
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We propose to work on the generalization of this result to any real algebraic extension
of Q in order to give a complete answer to Question 1.1. This work will settle the
important question of how much limitation one has in using semidefinite techniques for
finding algebraic certificates of nonnegativity.

1.2. The BMV trace conjecture. In 1975, while studying partition functions of quan-
tum mechanical systems, Bessis, Moussa, and Villania formulated a conjecture regarding
a positivity property of traces of matrices [11]. If this property holds, explicit error bounds
in a sequence of Padé approximants follow. Let A and B be n × n Hermitian matrices
with B positive semidefinite, and let

φA,B(t) = Tr[exp (A− tB)].

The original formulation of the conjecture asserts that φA,B is completely monotone.
Since the conjecture was introduced in [11], many partial results and extensive compu-

tational experimentation have been given [16, 17, 20, 26, 31, 39, 36, 56, 58], all in favor
of the conjecture’s validity. However, despite much work, very little is known about the
problem, and it has remained unresolved except in very special cases. Recently, Lieb
and Seiringer in [53], and as previously communicated to us [39], have reformulated the
conjecture of [11] as a question about the traces of certain sums of words in two positive
definite matrices.

Conjecture 1.3 (BMV). The polynomial p(t) = Tr [(A+ tB)m] has all nonnegative co-
efficients whenever A and B are n× n positive semidefinite matrices.

The coefficient of tk in p(t) is the trace of the sum, Sm,k(A,B), of all words of length
m in A and B, in which k B’s appear. In [39], among other things, it was noted that,
for m < 6, each constituent word in Sm,k(A,B) has nonnegative trace. Thus, the above
conjecture is valid for m < 6 and arbitrary positive integers n. It was also noted in [39]
(see also [11]) that the conjecture is valid for arbitrary m and n < 3. Thus, the first
case in which prior methods did not apply and the conjecture was in doubt, is m = 6
and n = 3. Even in this case, all coefficients, except Tr[S6,3(A,B)], were known to be
nonnegative (also as shown in [39]). It was only recently [36], using heavy computation,
that Johnson and I showed this remaining coefficient to be nonnegative.

Much of the subtlety of Conjecture 1.3 lies in the fact that Sm,k(A,B) need not have
all nonnegative eigenvalues, and in addition that some terms within the sum defining
Sm,k(A,B) can have negative trace. This later fact was only proved recently in work with
Johnson [39] (with the help of Shaun Fallat), in which we disproved the conjecture [39]
that all positive definite words in two letters have positive trace.

In [34], I made progress on the conjecture with the following theorem.

Theorem 1.4. Suppose that there exist integers m′, k′ and n×n positive definite matrices
A and B such that Tr[Sm′,k′(A,B)] < 0. Then, for any m ≥ m′ and k ≥ k′ such that
m − k ≥ m′ − k′, there exist n × n positive definite A and B making Tr[Sm,k(A,B)]
negative.

Corollary 1.5. If the Bessis-Moussa-Villani conjecture is true for some exponent m0,
then it is also true for all m < m0.

Corollary 1.5 motivates a general program to solve the BMV conjecture, and there is
evidence that this approach is more than a theoretical possibility. For instance, Hägele
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[30] has used this approach and Corollary 1.5 to prove the conjecture for all m ≤ 7
(and all n). Inspired by Hägele’s ideas, Klep and Schweighofer [74] used semidefinite
programming and noncommutative sums of squares techniques to prove the conjecture
for all m ≤ 13. One of their motivations was the Connes’ embedding conjecture on von
Neumann algebras [47]. It should be noted that these techniques provably fail [30] for the
difficult m = 6 case, making the appeal to Corollary 1.5 fundamental. Other work along
these lines appears in the papers of Burgdorf [13] and Landweber-Speer [51].

Another approach is to use the following theorem found in my paper [34]. It char-
acterizes the BMV conjecture in terms of the eigenvalues of the matrix Sm,k(A,B) and
resembles the Perron-Frobenius theorem for nonnegative matrices.

Theorem 1.6. Fix positive integers m ≥ k and n. Then, Tr[Sm,k(A,B)] ≥ 0 for all posi-
tive semidefinite A,B if and only if for all positive semidefinite A,B, the matrix Sm,k(A,B)
either has a positive eigenvalue or is the zero matrix.

It follows that to prove the BMV conjecture, it is enough to show the positivity of only
one of the eigenvalues of Sm,k(A,B), rather than the sum of all of them. I propose to
continue the study of this conjecture in light of these new methods and approaches.

1.3. Reality in the Schubert Calculus. Boris and Michael Shapiro conjectured in 1995
that a zero-dimensional intersection of Schubert varieties given by flags which osculate
the real rational normal curve would consist only of real points. Sottile investigated
this conjecture both experimentally and theoretically [76], generating significant interest
[22, 23, 78]. Utilizing a surprising connection to representation theory, Mukhin, Tarasov,
and Varchenko [59] recently settled the Shapiro conjecture. This gives rise to infinite
families of polynomial systems which have only real solutions.

Inspired by a generalization of Shapiro to flags called the monotone conjecture [73],
Eremenko, et. al [24] formulated another conjecture. The conditions in the Shapiro
conjecture are Schubert varieties defined by flags that osculate the rational normal curve
γ. A secant flag F• is one where every subspace Fi of F• is spanned by its points of
intersection with γ. Secant flags F 1

• , . . . , F
s
• are disjoint if there exist disjoint intervals

I1, . . . , Is of γ such that the subspaces in flag F i
• meet γ at points of Ii. They conjectured

that in a Grassmannian an intersection of Schubert varieties defined by disjoint secant
flags has only real points. In the limit as the interval Ii shrinks to a point the secant flag
F i
• becomes an osculating flag, and so this extends the Shapiro conjecture. They proved

this secant conjecture for lines in Pn, which implies the monotone conjecture for flags
consisting of a point lying on a line in Pn.

I am investigating this secant flag conjecture and a common generalization of both
it and the monotone conjecture with Sottile’s Schubert calculus group at Texas A&M
University. I have been developing the computational framework for storing, maintaining,
and running a large-scale experimental exploration of this new conjecture. This project is
similar to the one outlined in [73]. This is pat of a long-term program, involving hundreds
of gigaHertz-years of computing over many calendar years. We plan to write a paper
describing our results about secant flags during this academic year, and we will archive
our data on the web, and the next step will be to generalize this work to all flag manifolds.
This project also involves mentoring a number of young researchers in both the theoretical
and practical aspects of computation.
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2. Finiteness questions in rings with infinite Krull dimension

2.1. Ideals of Algebraic Relations. In chemistry [55, 71, 72] and algebraic statistics
[21], a motivating problem is to determine the algebraic relations between experimental
measurements. In this regard, Sturmfels has asked whether, up to symmetry, there are
finitely many of them that generate the others. We discuss the mathematics of this
problem and an approach by Aschenbrenner and myself for solving it.

Fix a natural number k ≥ 1. Given a positive integer n, we denote by 〈n〉k the set of
all ordered k-element subsets of {1, . . . , n}. Let K be a field, and for n ≥ k consider the
polynomial ring Rn = K

[
{xu}u∈〈n〉k

]
. We let Sn act on 〈n〉k by

σ(u1, . . . , uk) =
(
σ(u1), . . . , σ(uk)

)
.

This induces an action (σ, xu) 7→ σxu = xσu of Sn on the indeterminates xu, which
we extend to an action of Sn on Rn in the natural way. Set R =

⋃
n≥k Rn. Note

that R = K
[
{xu}u∈〈Ω〉k

]
, where Ω = {1, 2, 3, . . . } is the set of positive integers, and

that the actions of Sn on Rn combine uniquely to an action of S∞ on R. Now let
f(y1, . . . , yk) ∈ K[y1, . . . , yk], let t1, t2, . . . be an infinite sequence of pairwise distinct
indeterminates over K, and for n ≥ k consider the K-algebra homomorphism

φn : Rn → K[t1, . . . , tn], x(u1,...,uk) 7→ f(tu1 , . . . , tuk
).

The ideal Qn = ker φn of Rn determined by such a map is the prime ideal of algebraic rela-
tions between the quantities f(tu1 , . . . , tuk

). An important open problem is to understand
the limiting behavior of such relations.

The ideals Qn form an increasing chain Q◦ : Qk ⊆ Qk+1 ⊆ · · · ⊆ Qn ⊆ · · · . Such chains
fail to stabilize in the usual sense; however, it is possible for them to stabilize “up to the
action of the symmetric group”, a concept we make precise below. Notice first that the
chains induced by a polynomial f are invariant under the action of the symmetric group
in the sense that

〈SmQn〉 ⊆ Qm and Rn ∩Qm ⊆ Qn for all n ≤ m.

Equivalently, the ideal Q =
⋃
n≥kQn ⊆ R is invariant under the action of S∞. The

stabilization definition alluded to above is as follows.

Definition 2.1. A chain Q◦ stabilizes if there exists a positive integer N such that

〈SmQn〉 = Qm for all m ≥ n > N .

To put it another way, accounting for the natural action of the symmetric group, the
ideals Qn are the same for large enough n. In applications, this would imply that there
are only a finite number of “test relations” to check whether a series of measurements
satisfies a hypothetical underlying model.

When k = 1, Aschenbrenner and I have shown thatR is Noetherian as anR[S∞]-module
[7], which implies that any invariant chain stabilizes. When k > 1, however, R is no longer
Noetherian, making Sturmfels’ question about stability much more subtle. In [7], we were
able to prove a special case.

Theorem 2.2. The sequence of kernels Qn induced by a square-free monomial f ∈
K[y1, . . . , yk] stabilizes. Moreover, a bound for when stabilization occurs is N = 4k.
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The proof of this result used in a special way the toric geometry that underlies this
question. This theorem provides evidence for the following conjecture.

Conjecture 2.3. The sequence of kernels induced by any monomial f ∈ K[y1, . . . , yk]
stabilizes.

We propose to settle this conjecture. A key step will be to generalize a theorem of
Camina and Evans [14]. Namely, we will give a characterization of all the S∞-submodules
of Q〈Ω〉k. We will then use this description to get precise information on the union Q of
toric ideals Qn. These results will also be of independent interest.

2.2. Symbolic Computation of Symmetric Gröbner Bases. In computational al-
gebra, one encounters the following general problem.

Problem 2.4. Let I be an ideal of a ring R and let f ∈ R. Determine whether f ∈ I.

When R = K[x1, . . . , xn] is a polynomial ring in n indeterminates over a field K, this
problem has a spectacular solution due to Buchberger [10].

Theorem 2.5 (Buchberger). Let I = 〈f1, . . . , fm〉R be an ideal of R = K[x1, . . . , xn].
Then, there is a computable, finite set of polynomials G such that for every polynomial f ,
we have f ∈ I if and only if the polynomial reduction of f with G is 0.

One remarkable feature of this result is that once such a Gröbner basis G for I is found,
any new instance of the question “Is f ∈ I”? can be solved very quickly. Theorem 2.5
forms the backbone of the field of computational algebraic geometry.

We study a different but related membership problem Let X = {x1, x2, . . .} be an
infinite collection of indeterminates, indexed by the positive integers, and let S∞ be the
group of permutations of X. For a positive integer N , we will also let SN denote the set of
permutations of {1, . . . , N}. Fix a field K and let R = K[X] be the polynomial ring in the
indeterminates X. The group S∞ acts naturally on R: if σ ∈ S∞ and f ∈ K[x1, . . . , xn],

(2.1) σf(x1, . . . , xn) = f(xσ1, . . . , xσn) ∈ R.
We motivate our discussion with the following concrete problem. Questions of this

nature arise in applications to chemistry [55, 71, 72] and algebraic statistics [21].

Problem 2.6. Let f1 = x3
1x3 + x2

1x
3
2 and f2 = x2

2x
2
3 − x2

2x1 + x1x
2
3 and consider the ideal

I = 〈S∞f1,S∞f2〉R of R = K[X] generated by all permutations of f1 and f2. Is the
following polynomial involving 10 indeterminates in I?

f = −x2
10x

2
9x

6
5 − 2x2

10x9x
3
8x

5
5 − x2

10x
6
8x

4
5 + 3x2

10x
2
8 + 3x2

10x7 + 3x10x9x7x
3
4x

2
3x

2
2x1

+ 3x10x9x7x
3
4x

2
3x

2
1 − 3x10x9x7x

3
4x

2
2x

2
1 − x2

9x
7
8x7x6x

6
5 − 2x9x

10
8 x7x6x

5
5

+ x9x
3
5x3x2x

3
1 + x9x

3
5x

4
2x

2
1 + x9x3x

3
2x

4
1 + x9x

6
2x

3
1 − x1

83x7x6x
4
5 − 3x2

8x7

+ x2
7x6x

3
3x

7
2 + x2

7x6x
3
3x

5
2x1 − x2

7x6x3x
7
2x1 + x5x

2
4 − 3x5x

2
3 + 2x5x

2
1 + x2

4x
2
3

− 2x2
3x

2
1 + 5x3x

5
1 + 5x3

2x
4
1.

Naively, one could solve this problem using Buchberger’s algorithm with truncated
polynomial rings Rn = K[x1, . . . , xn]. Namely, for each n ≥ 10, compute a Gröbner
basis Gn for the ideal In = 〈Snf1,Snf2〉Rn , and reduce f by Gn. There are several
problems with this approach. For one, this method requires computation of many Gröbner
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bases (the bottleneck in any symbolic computation), the number of which depends on the
number of indeterminates appearing in f . Additionally, it lacks the ability to solve new
membership problems quickly, a powerful feature of Buchberger’s technique.

Building on our work in [7], Aschenbrenner and I have been developing an algorithm
that solves the general membership problem for symmetric ideals (such as those appearing
in Problem 2.6) and has all of the important features of Buchberger’s method. It is the
first algorithm of its kind that we are aware of. We develop some notation.

Let R[S∞] denote the (left) group ring of S∞ over R with multiplication given by
fσ · gτ = fg(στ) for f, g ∈ R and σ, τ ∈ S∞, and extended by linearity. The action (2.1)
naturally gives R the structure of a (left) module over the ring R[S∞]. An ideal I ⊆ R
is called symmetric if S∞I := {σf : σ ∈ S∞, f ∈ I} ⊆ I. Symmetric ideals are then
simply the R[S∞]-submodules of R.

We will also use the following notation. Let B be a ring and let G be a subset of
a B-module M . Then 〈f : f ∈ G〉B will denote the B-submodule of M generated by
the elements of G. For instance, the invariant ideal I = 〈x1, x2, . . .〉R, as a module over
the group ring R[S∞], has the compact presentation I = 〈x1〉R[S∞]. The results of [7]
generalize this simple example and imply a surprising Noetherianity of the module R.

Theorem 2.7. Let I be a symmetric ideal of R. Then, I is finitely generated as a module
over R[S∞]. Moreover, there is finite set of polynomials G such that for every polynomial
f , we have f ∈ I if and only if the polynomial reduction of f with G is 0.

The polynomial reduction appearing in Theorem 2.7 is a symmetric modification of the
reduction in the context of normal (finite dimensional) polynomial rings.

Example 2.8. The ideal I = 〈x3
1x3 + x2

1x
3
2, x

2
2x

2
3 − x2

2x1 + x1x
2
3〉R[S∞] from Problem 2.6

has a symmetric Gröbner basis given by:

G = S3 · {x3x2x
2
1, x

2
3x1 + x4

2x1 − x2
2x1, x3x

3
1, x2x

4
1, x

2
2x

2
1}.

Once G is found, testing whether a polynomial f is in I is computationally fast; for
instance, one finds that f ∈ I for the polynomial encountered in Problem 2.6. �

My work with Aschenbrenner has focused on developing a theoretical framework for
an algorithm we discovered that finds the set G in Theorem 2.7. This involves a new
and important partial order on monomials that respects the action of the symmetric
group. We aim to make our techniques computationally effective, and we will apply them
to the important finite dimensional situation. Many researchers in this field have been
interested in incorporating our methods for computing Gröbner bases with symmetry
because traditional techniques remove such structure. We also aim to generalize our
results to other group actions and rings.

3. Questions Related to Cyclic Resultants

3.1. The Chez Panisse Conjecture. Given a polynomial f(x) = c
∏d

i=1(x−λi) ∈ C[x],
the m-th cyclic resultant of f is

(3.1) rm = Res(f, xm − 1) = cm
d∏
i=1

(λmi − 1).
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One motivation for the study of cyclic resultants comes from topological dynamics. Se-
quences of the form (3.1) count periodic points for toral endomorphisms A. Cyclic resul-
tants were also studied by Pierce and Lehmer [25] in the hope of using them to produce
large primes. Further motivation comes from knot theory [77], Lagrangian mechanics
[29, 43], and, more recently, in the study of amoebas of varieties [69], complexity theory
[70], and quantum computing [45].

The problem of recovering a polynomial from its sequence of cyclic resultants arises
naturally in many applications. Commonly, an explicit bound N = N(d) is desired in
terms of the degree d of f so that the first N resultants r1, . . . , rN determine f [43, 45].
For instance, given a toral endomorphism, one would like to use a minimal amount of
period data to recover the spectrum of A. Building on my work in [40], Levine and I
Proved the following in [40].

Theorem 3.1. A generic monic polynomial f(x) ∈ C[x] of degree d is determined by its
first 2d+1 cyclic resultants r1, . . . , r2d+1. A generic monic reciprocal polynomial of even
degree d is determined by its first 2 · 3d/2 cyclic resultants.

Theorem 3.1 is far from tight. A conjecture of Sturmfels and Zworski addresses the
special case of a reciprocal polynomial f , that is, one satisfying f(1/x) = xdf(x).

Conjecture 3.2 (Chez Panisse I). A reciprocal monic polynomial f(x) ∈ C[x] of even
degree d is determined by its first d/2 + 1 cyclic resultants.

The name of the conjecture comes from the fact that Sturmfels and Zworski have
offered a free dinner to the solver at the world-class Chez Panisse restaurant in Berkeley.
Recently, there has been some progress on this conjecture for a special class of reciprocal
polynomials. Kedlaya [45] has shown that for a certain reciprocal polynomial f of degree
d arising from the numerator P (t) of a zeta function of a curve over a finite field Fq,
the first d resultants are sufficient to recover f . He uses this result to give a quantum
algorithm that computes P (t) in time polynomial in the degree of the curve and log q. A
proof of Conjecture 3.2 would further reduce the running time for Kedlaya’s algorithm.
Levine and I made the following related conjecture [40].

Conjecture 3.3 (Chez Panisse II). A generic monic polynomial f(x) ∈ C[x] of degree d
is determined by its first d+ 1 cyclic resultants.

In [40], Levine and I were able to offer a result in the direction of these conjectures. We
say that a sequence {an}n≥1, an ∈ K obeys a polynomial recurrence of length ` if there is
a polynomial P ∈ K[x1, . . . , x`] such that P (an, . . . , an+`−1) = 0 for all n ≥ 1.

Theorem 3.4. Let f ∈ C[x] be a monic polynomial of degree d. The sequence {rn}n≥1

of cyclic resultants of f obeys a polynomial recurrence of length d + 1. Moreover if f is
reciprocal of even degree d, then {rn} obeys a polynomial recurrence of length d/2 + 1.

For example, the monic quadratic polynomial f(x) = x2 + ax + b gives rise to the
length-3 polynomial recurrence,

(a+ b+ 1) [(a− 2)rn+2 + a(a− b− 1)rn+1 + (a− 2b)brn − (a− b− 1)(a+ b+ 1)]

= −r2
n+2 − (a− 2b)rn+1rn+2 + abrnrn+2 + (a− b− 1)br2

n+1

− (a− 2)b2rnrn+1 − b3r2
n.
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I have two approaches to settling the Chez Panisse conjectures. The first idea is to
use Theorem 3.4 to find polynomial recurrences for cyclic resultants and set up a system
of equations for the unknown polynomial f . Kauers and Zimmermann have developed
tools for this purpose [44]. These polynomial recurrences exist because of an algebraic
relation in a certain semigroup ring. Given enough cyclic resultant data, we can produce
enough equations in the coefficients of f to determine the unique solution in terms of the
coefficients. Moreover, these equations are nice because they are all supported on the
same monomials in the coefficients of f .

There is another approach that I believe it has a high chance of settling the Chez
Panisse conjectures. Equations 3.1 are sparse polynomials in the roots of f . There
is a well-developed theory of sparse systems of equations with supports given by the
integer points in polytopes. This involves an interplay of polyhedral subdivisions and
toric geometry. I propose to use this machinery in this highly structured special case.
The analysis is delicate, however, since the coefficients of these sparse systems are far
from generic. I implemented this program successfully for the case d = 2 and d = 3, and
I aim to generalize these arguments.

3.2. Binomial Factorizations in Group Algebras. Let G be a group and let Z[G]
be the group algebra over Z. We study the question of when two binomial factorizations
in Z[G] are equal. This problem arises naturally from the study of cyclic resultants
[27, 35, 40]. Given a polynomial f(x) ∈ C[x], let rm be the m-th cyclic resultant of
f , given by (3.1). Let S denote the ring of sequences over C under pointwise sum and
product, and for µ ∈ C, let e(µ) denote the exponential sequence e(µ)n = µn. With this
identification, the infinite sequence r = (rm) (3.1) of cyclic resultants can be represented
succinctly by

r = e(c)
d∏
i=1

(e(λi)− e(1)) ∈ S.

When G = C∗, the map e : Z[G] → S sending µ 7→ e(µ) (and extended by linearity) is
an embedding of Z-algebras [40]. It follows that determining when two polynomials have
equal sets of cyclic resultants is equivalent to solving a problem in binomial factorization.

Extending earlier work of Fried [27], I used this approach in [35] to completely char-
acterize when two polynomials have equal sets of cyclic resultants. Lauve and I are
generalizing the underlying factorization result used to prove the main theorem of [35]
to the case of noncommtative groups G. The following definition explains what we shall
mean by unique factorization of binomials.

Definition 3.5. A subset S of a group G has the unique binomial factorization property
if the existence of a factorization

a
m∏
i=1

(gi − hi) = b
n∏
i=1

(ui − vi), a, b ∈ Z, g−1
i hi, u

−1
i vi ∈ S

in Z[G] implies that a = ±b, m = n, and that up to permutation, for each i, there are
elements ci ∈ G such that (gi − hi) is conjugate to ±ci(ui − vi).

The factorization result in [35] can be rephrased as saying that set of the torsion-free
elements of an Abelian group G have unique binomial factorization. We do not know if
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this statement holds for any group G. However, we have made some progress for groups
with some additional structure that generalizes the abelian case.

Definition 3.6. Let G be a finitely generated group and let S ⊂ G. The set S is called
nonderogatory if for any g1, . . . , gn ∈ S, there is an additive group homomorphism φ :
G→ R such that φ(gi) 6= 0 for all i.

A large class of nonderogatory subsets can be obtained from the following [35].

Proposition 3.7. The torsion-free elements of an Abelian group are nonderogatory.

An important noncommutative example is the case G = GLn(C). Here, there is a
natural homomorphism φ : G → R given by φ(A) = log | detA|, and the set of elements
of G with determinants outside the unit circle is nonderogatory.

Lauve and I are working on a program to prove a sufficient condition for unique factor-
izations of binomials in a group algebra.

Conjecture 3.8. Nonderogatory subsets of a group G have the unique binomial factor-
ization property.

In the case of abelian G, this generalizes the known result [35], but it also would have
direct consequences for many other groups, such as GLn(C).

There are several steps in our program to prove Conjecture 3.8. Using the nonderoga-
tory property of the set S, we embed a supposed factorization into the (generalized)
Laurent polynomial ring Z[G][t, t−1] by way of the map g 7→ gtφ(g). This allows us to
equate the group algebra coefficients of powers of t separately. The argument then deals
with the explosion of combinatorial possibilities that results, and this requires a subtle
study of finitely presented groups. We have carried out this study successfully for small
numbers of binomials and also for special cases in the free group F2. This project involves
a pleasing blend of combinatorics, group theory, and symbolic computation

4. Gröbner Basis and Combinatorics

4.1. Graphs and Commutative Algebra. In recent years, it has been fruitful to study
questions on graphs using commutative algebra. Let G be a simple, undirected graph
with vertex set V = {1, . . . , n} and edge set E. Fix a positive integer k < n, and let
Ck = {c1, . . . , ck} be a k-element set. Each element of Ck is called a color. A (vertex)
k-coloring of G is a map ν : V → Ck. We say that a k-coloring ν is proper if adjacent
vertices receive different colors; otherwise ν is called improper. The graph G is said to be
k-colorable if there exists a proper k-coloring of G. Let R = C[x1, . . . , xn], and consider
the following ideals of R:

In,k = 〈xki − 1 : i ∈ V 〉,
IG,k = In,k + 〈xk−1

i + xk−2
i xj + · · ·+ xix

k−2
j + xk−1

j : {i, j} ∈ E〉.
The zeroes of In,k and IG,k represent k-colorings and proper k-colorings of the graph

G, respectively. The idea of using roots of unity and ideal theory to study graph coloring
problems seems to originate in Bayer’s thesis [9], although it has appeared in many other
places, including the work of de Loera [18] and Lovász [54]. These ideals are important
because they allow for an algebraic formulation of k-colorability. Versions of the following
theorem appeared in [4, 9, 18, 54, 57].
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Theorem 4.1. The following statements are equivalent:

(1) The graph G is not k-colorable.
(2) dimCR/IG,k = 0.
(3) The constant polynomial 1 belongs to the ideal IG,k.
(4) The graph polynomial fG belongs to the ideal In,k.

This theorem gives rise to algorithms [42] for determining k-colorability of a graph
that are different from the traditional ones that use deletion and contraction. In [42],
Windfeldt and I refined Theorem 4.1 and gave an algebraic characterization of uniquely
colorable graphs. This provided us with algorithms to verify a counterexample of Akbari,
Mirrokni, and Sadjad [3] to Xu’s conjecture [79].

Independently, de Loera et al [19] have been studying complexity questions related to
Gröbner bases and combinatorial optimization problems, such as graph colorings. The
condition that 1 ∈ IG,k can be checked by a Gröbner basis calculation, but the speed of this
calculation is intimately related to the sizes of the degrees in a Nullstellensatz certificate.
General theory says that this complexity is doubly exponential in the number of vertices
n. However, for the special situation encountered here, there is much evidence to suggest
that the complexity is only singly exponential. This would explain our experimental
findings in [42]. Moreover, a careful implementation would allow for the computation of
the chromatic numbers of large graphs, a significant advance.

I have begun working on this complexity problem with the team of de Loera, Margulies,
and Woo. Our first approach will be to step through the papers of Sombra [75] and Kollár
[48] for our special class of ideals. The hope is that some of the estimates in these works
can be improved when the ideals come from graphs. We will also perform a similar
inspection of the recent algorithmic advances on Castelnuovo-Mumford regularity [32],
which is an important invariant measuring the complexity of an ideal. This theoretical
work will be accompanied by a series of large-scale computations, which we will use to
test our conjectures. In the process, we will develop a suite of tools that will be made
available for other researchers working on symbolic computation and graph theory.

4.2. Gröbner Bases and Partial Sums of Catalan Numbers. The Casas-Alvero
conjecture says that the following are equivalent for a degree d monic polynomial f ∈ C[x]:

(1) f(x) = (x− b)d for some b ∈ C.

(2) gcd(f, d
if
dxi ) 6= 1 for all k = 1, . . . , d− 1.

For certain classes of degrees (for instance, prime powers), this result is known to be true
[12]. Garcia and I have been studying this conjecture from the perspective of commutative
algebra and Gröbner bases. Clearly (1)⇒ (2), and so the conjecture is (2)⇒ (1). Fix d
and let r1, . . . , rd be indeterminates. Also, set fd(x) = (x− r1) · · · (x− rd). Consider the
polynomials in Z[r1, . . . , rd],

sk = Res(fd, f
(k)
d ), k = 1, . . . , d− 1,

in which f
(k)
d is the kth derivative of fd with respect to x. The conjecture may be

reformulated in terms of the ideal Id = 〈sk : k = 1, . . . , d− 1〉 and its variety:

Conjecture 4.2. For the ideals Id, we have V (Id) = {(r, r, . . . , r) ∈ Cd : r ∈ C}.
11



Unfortunately, this ideal is very complicated [12], and so Garcia and I made a relaxation.
Let Jd be the ideals generated by the following polynomials:

tk = Res(x− r1, f
(k)
d ), k = 1, . . . , d− 1.

In this case, it is readily verified that an analog of Conjecture 4.2 holds. We have some
ideas for using the information gained from studying the ideals Jd. For instance, we hope
to induct on the integer l in a relaxation that replaces (x − r1) with (x − r1) · · · (x − rl)
in the definition of tk. The ideals Jd then form the base case in this approach.

It turns out that the collection of Jd are very interesting combinatorially. For instance,
choosing the lexicographic ordering on monomials in r1, . . . , rd and computing the reduced
Gröbner basis Gd for each Jd, one finds that it consists of homogenous polynomials and
that |Gd| is identical (up to d = 12) to an interesting combinatorial sequence of numbers
{1, 2, 4, 9, 23, 65, 197, 626, . . .}, the partial sums of the Catalan numbers. Let Cd = 1

d+1

(
2d
d

)
denote the dth Catalan number. Then, we conjecture the following.

Conjecture 4.3. For the Gröbner bases Gd, we have |Gd| =
∑d−1

i=0 Cd.

We have much evidence for this conjecture. For instance, we have determined an
algorithm that (conjecturally) generates the leading monomials in Gd. We also found a
way to index the monomials generated by this algorithm, and we have proved that they
are in combinatorial bijection with partial sums of Catalan numbers. The next step in
our approach is to match the steps in this algorithm with the sequence of S-polynomial
reductions that occur in a Gröbner basis calculation of the ideals Jd.

The phenomenon found in Conjecture 4.3 appears to be new, although Aval-Bergeron-
Bergeron have also recently discovered an ideal having similar combinatorial structure
that occurs naturally when computing the dimension of a quotient ring of quasisymmetric
functions [8]. As in our case, they sought a bijection between the combinatorial objects
they were studying and steps in a Gröbner basis calculation. Garcia and I also plan to
investigate if there is a quotient ring of dimension |Gd| hiding in our work.

5. An Abel Theorem for Word Equations

The Lieb and Seiringer formulation of the BMV trace conjecture says that the trace of
Sm,k(A,B), the sum of all words of length m in A and B with k Bs, is nonnegative for all
positive semidefinite matrices A and B. In the case of 2× 2 matrices, every word in two
positive semidefinite letters has nonnegative trace, thereby verifying the BMV conjecture
for this case. It was unknown whether this fact held in general until Johnson and I [39]
(with the help of Shaun Fallat) found that the word W = BABAAB has negative trace
with the matrices:

A1 =

 1 20 210
20 402 4240
210 4240 44903

 and B1 =

36501 −3820 190
−3820 401 −20

190 −20 1

 .
Finding such examples is surprisingly difficult as the methods in [39] show, and ran-

domly generating millions of matrices will fail to produce them [39]. Nonetheless, we
believe that most words can have negative trace, and we made the following conjecture
in [39].
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Conjecture 5.1. A word in two letters A and B has positive trace for every pair of real
positive definite A and B if and only if the word is a palindrome or a product (juxtaposi-
tion) of 2 palindromes.

Evidence for the conjecture can be found in [38], where we essentially proved it in the
complex Hermitian case. Positive definite matrices which give a word a negative trace are
potential counterexamples to the BMV conjecture, and it is useful to be able to generate
many of these matrices. As remarked above, this is a difficult task since random sampling
methods do not work.

We were led to constructing these matrices by solving positive definite word equations.
Let W be a palindrome in the letters A and B. If the equation W (A1, X) = B1 may
be solved for a positive definite X given A1 and B1, then the word WAWAAW can
have negative trace. This would allow us to construct many potential counterexamples
to the BMV conjecture. In this regard, we were able to show the surprising result that
every palindromic word equation W (A,X) = B has a positive definite solution X for
any pair of positive definite A and B [37]. The proof of this result uses fixed point
methods, although for special cases, one may express X explicitly in terms of A,B, and
their fractional powers. For instance, the Riccati equation XAX = B has solution

(5.1) X = A−1/2
(
A1/2BA1/2

)1/2
A−1/2.

Even though solutions always exist, it is usually very difficult to solve word equations
[5]. Solutions of the form (5.1), however, can be computed efficiently, and it is natural to
try and determine those equations which can be solved similarly. The correct setting for
this question is the category of uniquely divisible groups (also called universal). These are
groups G for which every g ∈ G has a unique nth root for each positive integer n. Such
groups have appeared recently in Aguiar’s work on combinatorial Hopf algebras [1, 2].
Equation (5.1) is the unique solution to XAX = B in any uniquely divisible group.

I have investigated this problem and formulated a conjecture that gives a complete
description of those word equations that have solutions in terms of radicals.

Definition 5.2. A word is called totally decomposable if it can be expressed as a compo-
sition of maps of the following forms applied to the letter X.

• πm,k(W ) = (WAk)mW , m a positive integer, k a nonnegative integer
• r(W ) = WA
• l(W ) = AW

It is not hard to prove that a decomposable word equation has solutions in terms of
radicals. The following converse can be viewed as an Abel theorem for word equations.

Conjecture 5.3. A word equation W (X,A) = B is solvable in terms of radicals only if
W is a totally decomposable word.

I have developed a program to prove this conjecture. The idea involves gluing together
an infinite sequence of specially constructed finite groups. It uses a pleasing blend of
number theory (Dirichlet’s theorem on arithmetic progressions and the Weil conjectures
for curves) and combinatorics (a new word polynomial which characterizes total decom-
posability in terms of its factorability). With Levine, we can show that this program
settles Conjecture 5.3 for words of length less than 20. I will continue to collaborate with
Levine on this problem and carry out the remaining details of the program.
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