DISCRIMINANTS OF SYMMETRIC MATRICES

> AbSTRACT. The discriminant of a symmetric matrix $A^{T}=A=\left[x_{i j}\right]$ in indeterminates $x_{i j}$ is a sum of squares of polynomials in $\mathbb{Z}\left[x_{i j}: 1 \leq i \leq j \leq n\right]$. Our treatment follows that of Roy in [1].

Let $R=\mathbb{Z}\left[x_{i j}: 1 \leq i \leq j \leq n\right]$. Given a symmetric matrix $A=\left[x_{i j}\right]$ in indeterminates $x_{i j}$, the discriminant of A is the discriminant of the characteristic polynomial for A. Over an algebraic closure K of the fraction field of R, this may be expressed as

$$
\prod_{i<j}\left(y_{i}-y_{j}\right)^{2}=\prod_{i<j}\left(y_{i}-y_{j}\right) \cdot \prod_{i<j}\left(y_{i}-y_{j}\right)
$$

in which $y_{1}, \ldots, y_{n} \in K$ are the eigenvalues of A. Notice that the above expression is also

$$
\operatorname{det}\left(V_{n} V_{n}^{T}\right)=\operatorname{det}\left(V_{n}\right)^{2}
$$

where V_{n} is the vandermond matrix

$$
V_{n}=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
y_{1} & y_{2} & \cdots & y_{n} \\
\cdots & \cdots & \cdots & \cdots \\
y_{1}^{n-1} & y_{2}^{n-1} & \cdots & y_{n}^{n-1}
\end{array}\right]
$$

The matrix $B=V_{n} V_{n}^{T}$ has entries which are the Newton sums of the roots y_{i}. Of course, the trace of A^{k} is the k th Newton sum of the y_{i}. Thus, we have that $B=\left[\operatorname{tr}\left(A^{i+j}\right)\right]$. We will now express B as another product $C C^{T}$ as follows.

Let $E_{i j}$ be the $n \times n$ matrix with 0 s everywhere except for a 1 in the (i, j) th entry. A basis for the symmetric matrices is then given by

$$
E_{i i},\left(E_{i j}+E_{j i}\right) / \sqrt{2}(i \neq j) .
$$

So, for example, the matrix

$$
A=\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{12} & x_{22}
\end{array}\right]
$$

is represented as

$$
x_{11}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+x_{22}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\sqrt{2} \cdot x_{12}\left[\begin{array}{cc}
0 & 1 / \sqrt{2} \\
1 / \sqrt{2} &
\end{array}\right] .
$$

This basis is useful since the inner product of two symmetric matrices P, Q with respect to this basis is simply $\operatorname{tr}[P Q]$, as one can easily check.

For each $i=0, \ldots, n-1$, express the powers A^{i} in this basis and place the vectors of coefficients as rows of a matrix C. The entries of the $n \times\binom{ n+1}{2}$ matrix C will be in $R[\sqrt{2}]$. For instance, in the $n=2$ case, this matrix C is

$$
C=\left[\begin{array}{ccc}
1 & 1 & 0 \tag{0.1}\\
x_{11} & x_{22} & \sqrt{2} \cdot x_{12}
\end{array}\right]
$$

By construction, we have the formal identity,

$$
B=\left[\operatorname{tr}\left(A^{i+j}\right)\right]=C C^{T} .
$$

Recall that we are interested in the determinant of B; to compute this in terms of (minors of) the matrix C, we recall the following theorem.

Theorem 0.1 (Cauchy-Binet). Let C be an $n \times m$ matrix and D be an $m \times n$ matrix. For every $I \subseteq\{1, \ldots, m\}$ of cardinality n, denote by C_{I} the $n \times n$ matrix obtained by extracting from C the columns with indices in I. Similarly let D^{I} be the $n \times n$ matrix obtained by extracting from D the rows with indices in I. Then, we have

$$
\operatorname{det}(C D)=\sum_{I \subseteq\{1, \ldots, m\},|I|=n} \operatorname{det}\left(C_{I}\right) \operatorname{det}\left(D^{I}\right)
$$

Restricting to the case of interest, when $D=C^{T}$, we have that $\operatorname{det}\left(C_{I}\right) \operatorname{det}\left(D^{I}\right)=$ $\operatorname{det}\left(C_{I}\right)^{2}$. In particular, $\operatorname{det}(B)=\operatorname{det}\left(C C^{T}\right)$ is given by a sum of squares of polynomials in $R[\sqrt{2}]$. To conclude, we make the observation that each $\operatorname{det}\left(C_{I}\right)$ can be expressed as a power of $\sqrt{2}$ multiplied by a polynomial in R; therefore, $\operatorname{det}\left(C_{I}\right)^{2}$ is a power of 2 times a square in R.

In the $n=2$ example, the discriminant is the sum of the 2×2 minors of C in (0.1):

$$
\begin{gathered}
\left(x_{22}-x_{11}\right)^{2}+\left(\sqrt{2} \cdot x_{12}\right)^{2}+\left(\sqrt{2} \cdot x_{12}\right)^{2} \\
=\left(x_{22}-x_{11}\right)^{2}+\left(x_{12}\right)^{2}+\left(x_{12}\right)^{2}+\left(x_{12}\right)^{2}+\left(x_{12}\right)^{2}
\end{gathered}
$$

a sum of squares in $\mathbb{Z}\left[x_{11}, x_{22}, x_{12}\right]$.

References

[1] M. Roy, Subdiscriminants of symmetric matrices are sums of squares, 2005.

