
Chapter 3

Logarithmic Derivatives

3.1 Statement of Results

Using Gröbner basis techniques, we provide new constructive proofs of two theorems of

Harris and Sibuya [21, 22] (see also, [60, 61] and [62, Problem 6.60]) that give degree

bounds and allow for several generalizations. To prepare for the statement of the result,

we begin with some preliminary definitions.

Definition 3.1.1. A differential field is a field K equipped with a map called a derivation

D : K → K that is linear and satisfies the ordinary rule for derivatives; i.e.,

D(u + v) = D(u) + D(v), D(uv) = uD(v) + vD(u).

When it is more convenient, we sometimes write u′, u′′, etc. for Du, D2u, etc.

Let F be a differential field extension of K (that is, a field extension that is also a

differential field). A linear homogeneous differential polynomial L(Y ) over K of order m

is a mapping from F to itself of form

L(Y ) = amDm(Y ) + am−1D
m−1(Y ) + · · · + a1D(Y ) + a0Y, ai ∈ K, am #= 0.

We may now state the results of Harris and Sibuya.

Proposition 3.1.2. Let N1, N2 > 1 be positive integers and let K be a differential field

of characteristic 0. Let F be a (differential) field extension of K and suppose that L1(Y )
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and L2(Y ) are nonzero homogeneous linear differential polynomials (of orders N1 and

N2 respectively) with coefficients in K. Further, suppose that one of the following holds:

(1) y ∈ F has L1(y) = L2(1/y) = 0, or

(2) N2 ≤ q ∈ +, and y ∈ F has L1(y) = L2(yq) = 0.

Then, Dy/y is algebraic over K.

In this chapter, we prove the following more refined result.

Theorem 3.1.3. Let N1, N2 > 1 be positive integers and let K be a differential field

of characteristic 0. Let F be a (differential) field extension of K. Suppose that L1(Y )

and L2(Y ) are nonzero homogeneous linear differential polynomials (of orders N1 and

N2 respectively) with coefficients in K. Further, suppose that one of the following holds:

(1) y ∈ F has L1(y) = L2(1/y) = 0, or

(2) N2 ≤ q ∈ +, and y ∈ F has L1(y) = L2(yq) = 0.

Then, Djy/y is algebraic over K for all j ≥ 1. Moreover, the degree of the minimal

polynomial for Djy/y (j = 1, . . . , N1 − 1) in (1) is at most
(N2+N1−2

N1−1

)
.

Remark 3.1.4. We note that with a more careful analysis, one may use our techniques

to get similar results for fields of sufficiently large characteristic.

The first part (algebraicity) of this theorem is proved in Section 3.3, while in

Section 3.4, we prove the specified degree bounds. Finally, in Section 3.5, we describe

how our technique applies to certain nonlinear differential equations. Recall that a

polynomial f ∈ K[x] is called separable if all of its roots are distinct, and a field K is

called perfect if every irreducible polynomial in K[x] is separable. Examples of perfect

fields include finite fields, fields of characteristic zero, and, of course, algebraically closed

fields. It is interesting to note that there is a converse to Theorem 3.1.3 for this class of

fields.

Proposition 3.1.5. Let K be a perfect field. If y′/y is algebraic over K, then both y

and 1/y satisfy linear differential equations over K.
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Proof. Suppose that K is perfect and u = y′/y is algebraic over K. Let f(x) = xm +

am−1xm−1 + · · ·+a0 ∈ K[x] be the monic, irreducible polynomial for u over K. Since K

is perfect, it follows from basic field theory that gcd(f, ∂f
∂x ) = 1. In particular, ∂f

∂x #= 0.

Consider now,

0 = f(u)′ = u′
(

mum−1 +
m−1∑

i=1

iaiu
i−1

)
+

m−1∑

i=0

a′iu
i.

Since ∂f
∂x = mxm−1 +

∑m−1
i=1 iaixi−1 is not the zero polynomial, it follows from the irre-

ducibility of f that mum−1 +
∑m−1

i=1 iaiui−1 #= 0. Hence, u′ ∈ K(u) and the same holds

for higher derivatives.

Next, notice that (1/y)′ = −y′/y2 = −u/y and an easy induction gives us

that (1/y)(k) = pk(u, u′, u′′, . . .)/y, in which pk is a polynomial (over K) in u and its

derivatives (set p0 = 1). By above, the polynomials pk(u, u′, . . .) lie in the field K(u).

This implies that they satisfy some (non-trivial) linear dependence relation,

N∑

k=0

hkpk = 0,

in which hk ∈ K. Therefore,

0 =
N∑

k=0

hkpk/y =
N∑

k=0

hk(1/y)(k)

as desired. Performing a similar examination on the derivatives of y′ = uy produces a

linear differential equation for y over K, completing the proof.

As an application of our main theorem, take F to be the field of complex

meromorphic functions on and K = . Then, the only y such that both y and 1/y

satisfy linear differential equations over K are the functions, y = ceux, in which u is an

algebraic number of degree at most min{N1, N2} and c ∈ \ {0}. This simple example

shows that it is possible to produce a minimum degree of min{N1, N2} for y′/y; however,

it is still an open question of whether we can achieve a minimum degree close to the bound

given in Theorem 3.1.3.

Theorem 3.1.3 can also be used to show that elements in a differential field F

do not satisfy linear differential equations over a subfield K, as the following example

demonstrates.
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Example 3.1.6. ([62, Problem 6.59]). Let K = (x) and F = ((x)). Then, sec(x)

does not satisfy a linear differential equation over K. To see this, suppose otherwise.

Then, since y = cos(x) satisfies a linear differential equation, Theorem 3.1.3 would imply

that y′/y = cos(x)′/ cos(x) = − tan(x) is algebraic over (x), a contradiction.

3.2 Algebraic Preliminaries

We begin by quickly reviewing some standard terminology (some of this material overlaps

that of Chapter 1). Let K be a field. A term order (or monomial ordering) on n is a

total order ≺ that is a well-ordering and is linear:

a ≺ b ⇒ a + c ≺ b + c,

for a, b, c ∈ n. This ordering of n gives a corresponding ordering on the monomials

of R = K[x1, . . . , xn].

Given a polynomial f ∈ R, the leading monomial of f (simply written lm≺(f))

is the largest monomial occurring in f with respect to ≺. The initial ideal of an ideal

I ⊆ R is defined to be

in≺(I) := 〈lm≺(f) : f ∈ I〉.

A Gröbner Basis for an ideal I ⊆ R is a finite subset G = {g1, . . . , gm} of I such that:

〈lm≺(g1), . . . , lm≺(gm)〉 = in≺(I).

There is a canonical Gröbner basis for an ideal with respect to a fixed term order called

the reduced Gröbner Basis of I, and it can be computed algorithmically [9].

Let I be an ideal of a polynomial ring R = K[x1, . . . , xn] over the field K and

let V (I) be the corresponding variety (we work over K
n to simplify exposition):

V (I) := {(a1, . . . , an) ∈ K
n : f(a1, . . . , an) = 0 for all f ∈ I}.

We call V (I) zero-dimensional if it consists of a finite number of points. The following

characterization of zero-dimensional varieties can be found in [9, p. 230].

Theorem 3.2.1. Let V (I) be a variety in K
n and fix a term ordering ≺ for K[x1, . . . , xn].

Then the following statements are equivalent:
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(1) V is a finite set.

(2) For each i, 1 ≤ i ≤ n, there is some mi ≥ 0 such that xmi
i ∈ in≺(I).

(3) Let G be a Gröbner basis for I. Then for each i, 1 ≤ i ≤ n, there is some mi ≥ 0

such that xmi
i = lm≺(g) for some g ∈ G.

The following fact is well-known, but we include a proof for completeness.

Proposition 3.2.2. If V (I) is a zero-dimensional variety, then the coordinates of every

point of V (I) are algebraic over K.

Proof. Let (a1, . . . , an) be a point in V (I). We prove that a1 is algebraic over K (the other

coordinates are treated similarly). Fix a lexicographic term order ≺ on K[x1, . . . , xn]

such that x1 < x2 < · · · < xn, and let G be a reduced Gröbner basis for I with respect

to this term order. Then, it follows from Theorem 3.2.1 that xm
1 = lm≺(g) for some

0 #= g ∈ G and m ≥ 0. Since G is computed using operations in the field K (the

ideal I is defined over K), it follows that g ∈ K[x1, . . . , xn]. Moreover, our term order

insures that g(x1, . . . , xn) = g(x1) is a univariate polynomial in the variable x1. Since

g(a1, . . . , an) ∈ I, we must have that g(a1) = 0. It follows that a1 is algebraic over K,

completing the proof.

Proposition 3.2.2 is an important tool in the proof of our main theorem. We

now describe another ingredient in the solution of our problem, although its generality

should be useful in many other contexts. Give R a grading by assigning to each xi, a

number w(xi) = wi ∈ , so that

w

(
n∏

i=1

xvi
i

)
=

n∑

i=1

viwi.

Then, we have the following extension of a result of Sperber [61]. A proof of a general-

ization can be found in [57, Lemma 2.2.2]; however, again for completeness we include

an argument for our special case.

Lemma 3.2.3. Let I be the ideal of R = K[x1, . . . , xn] generated by a collection of

polynomials, {fβ}β∈Γ ⊆ R. Let f̃β be the leading homogeneous form of fβ with respect

to the above grading, and let J be the ideal generated by {f̃β}β∈Γ. Then, if V (J) is

zero-dimensional, so is V (I).
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Proof. Fix a grading w = (w1, . . . , wn) ∈ n and let ≺ be a monomial ordering on R.

Define a new monomial ordering ≺w as follows [64, p. 4]: for a, b ∈ n we set

a ≺w b :⇔ w · a < w · b or (w · a = w · b and a ≺ b).

Since V (J) is zero-dimensional, as before, Theorem 3.2.1 tells us that for each i ∈
{1, . . . , n} there exist integers mi ≥ 0 such that xmi

i ∈ in≺w(J). From Dickson’s Lemma

[9, p. 69], it follows that in≺w(J) can be finitely generated as

〈lm≺w(f̃β1), . . . , lm≺w(f̃βq)〉

for some positive integer q and βj ∈ Γ. Thus, we may write

xmi
i =

q∑

j=1

gi,j · lm≺w(f̃βj )

for polynomials gi,j . Set g̃i,j to be the terms in gi,j of weight miwi−w(f̃βj ), and also let

ĝi,j = gi,j − g̃i,j . Notice that the equation above then implies

xmi
i =

q∑

j=1

ĝi,j · lm≺w(f̃βj ) +
q∑

j=1

g̃i,j · lm≺w(f̃βj ).

The first sum on the right above has terms of weight that are different from miwi, while

the second has terms of only this weight. Since the left-hand-side of the equation has

weight miwi, we must have that

q∑

j=1

ĝi,j · lm≺w(f̃βj ) = 0.

Finally, define

hi =
q∑

j=1

g̃i,jfβj ∈ I.

It is clear that the leading term (with respect to ≺w) of hi is xmi
i . But then again using

Theorem 3.2.1, we have that V (I) is a finite set, completing the proof.

In other words, this lemma says that in many instances information about an

ideal I can be uncovered by passing to a simpler ideal involving leading forms. This

fundamental concept is an important component in Gröbner deformation theory.
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3.3 Proofs of The Main Theorems

Before embarking on proofs of the theorems stated in Section 3.1, we present a simple

example to illustrate our technique. Let y1, y2, . . . be variables. We will view yj = Djy/y

as solutions to a system of polynomial equations over K[{yj}∞j=1]. For example, consider

the system (N1 = 3, N2 = 2):

y′′′ + a2y
′′ + a1y

′ + a0y = 0,

(1/y)′′ + b1(1/y)′ + b0(1/y) = 0

in which a2, a1, a0, b1, b0 ∈ K. Dividing the first equation by y and expanding the second

one gives us the more suggestive equations:

y3 + a2y2 + a1y1 + a0 = 0,

(2y2
1 − y2)− b1y1 + b0 = 0.

Also, differentiating the original equation for 1/y and expanding, we have that

−6y3
1 + 6y1y2 − y3 + b1(2y2

1 − y2)− y1(b′1 + b0) + b′0 = 0.

Thus, we may view (y′/y, y′′/y, y′′′/y) = (y1, y2, y3) as a solution to a system of three

polynomial equations in three unknowns.

Let w(yi) = i define a grading of K[y1, y2, y3], and notice that the system of

leading forms, {y3 = 0, 2y2
1−y2 = 0,−6y3

1 +6y1y2−y3 = 0}, has only the trivial solution

(y1, y2, y3) = (0, 0, 0). In light of Lemma 3.2.3, it follows that the equations above define a

zero-dimensional variety. Therefore, appealing to Proposition 3.2.2, we have established

the algebraicity component of Theorem 3.1.3 (1) for this example (N1 = 3, N2 = 2).

In general, we will construct a system of N1 − 1 equations in N1 − 1 unknowns

satisfied by the yi. These equations will define a zero-dimensional variety, and thus, stan-

dard elimination techniques (see, for instance, [8]) give us a direct method of computing,

for each i, a nonzero polynomial (over K) satisfied by yi.

Let us first examine what happens when we compute fn = Dn(1/y). Notice

60



that

f0 = 1/y

f1 = −y−2Dy = −y1/y

f2 = 2y−3(Dy)2 − y−2D2y = 2y2
1/y − y2/y

f3 = −6y3
1/y + 6y1y2/y − y3/y.

In general, these functions fn can be expressed in the form fn = (1/y)pn(y1, . . . , yn)

for polynomials pn ∈ [y1, . . . , yn]. Moreover, with respect to the grading w(yi) = i,

these pn are homogeneous of degree n. These facts are easily deduced from the following

lemma.

Lemma 3.3.1. Let m ∈ +. Then,

pm

m!
= −

m−1∑

j=1

pm−j

(m− j)!
yj

j!
− ym

m!
.

Proof. Consider the following well-known identity (Leibniz’ rule),

m∑

j=0

(
m

j

) (
Djh

) (
Dm−jg

)
= Dm(hg).

Setting h = y and g = 1/y, it follows that

m∑

j=0

Djy

j!
Dm−j(1/y)
(m− j)!

= 0.

Multiplying the numerator and denominator by y and rewriting this expression

gives us
pm

m!
= − pm−1

(m− 1)!
y1

1!
− pm−2

(m− 2)!
y2

2!
− · · ·− p1

1!
ym−1

(m− 1)!
− ym

m!
.

We are now ready to prove Theorem 3.1.3 (1).

Proof of Theorem 3.1.3 (1). With N1, N2 as in Theorem 3.1.3, we suppose N1 = n,

N2 = m. Dividing through by y in the first differential equation for y gives us

yn = −an−1yn−1 − · · ·− a1y1 − a0, ai ∈ K (3.3.1)

61



while multiplying the second one for 1/y by y produces the equation

pm + bm−1pm−1 + · · · + b0 = 0, bi ∈ K.

Differentiating k times the original linear differential equation for y, we will arrive at

linear equations yn+k = Lk(y1, . . . , yn−1) in terms (over K) of y1, . . . , yn−1 like (3.3.1)

above (by repeated substitution of the previous linear equations). If we also differentiate

the equation for 1/y k times, we will produce another equation for the variables yi. More

formally, we have that

Dm+k(1/y) + Dk(bm−1D
m−1(1/y)) + · · · + Dk(b0/y) = 0

produces the equation (by Leibniz’ rule)

Dm+k(1/y) +
m−1∑

i=0

k∑

j=0

(
k

j

) (
Djbi

) (
Dk−j+i (1/y)

)
= 0.

So finally (after multiplying through by y), it follows that

Pm+k := pm+k +
m−1∑

i=0

k∑

j=0

(
k

j

) (
Djbi

)
pk−j+i = 0. (3.3.2)

It is clear that the leading homogeneous forms of the Pm+k (with respect to

the grading above) are pm+k. Consider now the ring homomorphism φ : K[{yi}∞i=1] →
K[y1, . . . , yn−1] defined by sending yj -→ 0 for j ≥ n and yj -→ yj for j < n. Let P̃m+k

denote the polynomials produced by substituting the linear forms Li for the variables

yn+i (i = 0, 1, . . .) into the polynomials, Pm+k. The leading homogeneous forms of the

P̃m+k will just be p̃m+k := φ(pm+k) because we are substituting linear polynomials with

strictly smaller degree (corresponding to the grading). In light of Lemma 3.2.3, we verify

that the n− 1 equations (in the n− 1 variables),

p̃m = 0, p̃m+1 = 0, . . . , p̃m+n−2 = 0, (3.3.3)

are only satisfied by the point (0, . . . , 0) to prove the claim.

Suppose that (y1, . . . , yn−1) #= (0, . . . , 0) is a zero of the system in (3.3.3); we

will derive a contradiction. Let r ∈ {1, . . . , n−1} be the largest integer such that yr #= 0,
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and choose t ∈ {0, . . . ,m− 1} maximal such that p̃m−t = 0, p̃m−t+1 = 0, . . ., p̃m = 0. If

t = m− 1, then p̃1 = −y1 = 0, and so the recurrence in Lemma 3.3.1 and (3.3.3) give us

that yi = 0 for i ∈ {1, . . . , n− 1}, a contradiction. Thus, t ≤ m− 2. Using Lemma 3.3.1

with φ (and the maximality of r), we have the following identity:

p̃m−t+r−1

(m− t + r − 1)!
= − p̃m−t+r−2

(m− t + r − 2)!
y1

1!
− · · ·− p̃m−t

(m− t)!
yr−1

(r − 1)!
− p̃m−t−1

(m− t− 1)!
yr

r!
.

From (3.3.3) and the property of t above, it follows that p̃m−t−1

(m−t−1)!
yr
r! = 0. Thus,

yr = 0 or p̃m−(t+1) = 0; the first possibility contradicts yr #= 0, while the second contra-

dicts maximality of t.

This proves that the equations (3.3.3) define a zero-dimensional variety, from

which the algebraicity of Djy/y (j = 1, . . . , n− 1) follows using Proposition 3.2.2. With

repeated differentiation of (3.3.1), we also see that Djy/y is algebraic for all j ≥ n. The

proof of the degree bounds will be postponed until Section 3.4.

The proof for Theorem 3.1.3 (2) is similar to the one above, however, the

recurrences as in Lemma 3.3.1 are somewhat more complicated. Let n ∈ , q ∈ +

and examine fn,q = Dn(yq). It turns out that fn,q = yqpn,q(y1, . . . , yn) in which pn,q ∈
[y1, . . . , yn] is homogeneous of degree n (with respect to the grading w(yi) = i). This

follows in a similar manner as before from the following lemma.

Lemma 3.3.2. Let pn,1 = yn for n ∈ (y0 = 1). Then, for all m ∈ , q > 1,

pm,q = ym +
m−1∑

j=0

(
m

j

)
yjpm−j,q−1.

Proof. Use Leibniz’ rule as in Lemma 3.3.1 with h = yq−1 and g = y.

The next lemma will be used in the proof of Theorem 3.1.3 (2), and it follows

from a straightforward induction on a (using Lemma 3.3.2).

Lemma 3.3.3. Let φ be as in the proof of Theorem 3.1.3 (1) and n ≥ 2. Then, for all

a ∈ + and b ∈ , we have φ
(
p(a+1)(n−1)+b,a

)
= 0.

We now prove Theorem 3.1.3 (2).
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Proof of Theorem 3.1.3 (2). With N1, N2 as in Theorem 3.1.3, we suppose N1 = n,

N2 = m ≤ q. As before, the first differential equation for y gives us

yn = −an−1yn−1 − · · ·− a1y1 − a0 ai ∈ K (3.3.4)

while the second one for yq (after dividing through by yq) produces the equation

pm,q + bm−1pm−1,q + · · · + b0 = 0 bi ∈ K.

Differentiating k times the original linear differential equation for y, produces linear

equations yn+k = Lk(y1, . . . , yn−1) in terms (over K) of y1, . . . , yn−1 like (3.3.4) above.

If we also differentiate the equation for yq, k times, we will arrive at another equation

for the variables yi:

Pm+k,q := pm+k,q +
m−1∑

i=0

k∑

j=0

(
k

j

) (
Djbi

)
pk−j+i,q = 0.

It is clear that the leading homogeneous forms of the Pm+k,q (with respect to

the grading above) are pm+k,q. Let φ be as in the proof of Theorem 3.1.3 (1), and

let P̃m+k,q denote the polynomials produced by substituting the linear forms Li for the

variables yn+i (i = 0, 1, . . .) into the polynomials, Pm+k,q. If p̃m+k,q := φ(pm+k,q) #= 0,

then the leading homogeneous form of P̃m+k,q is p̃m+k,q because we are substituting linear

polynomials with strictly smaller degree (corresponding to the grading).

Consider the following system of equations (recall that q ≥ m and n ≥ 2),

p̃m,q = 0, p̃m+1,q = 0, . . . , p̃(q+1)(n−1)−1,q = 0. (3.3.5)

We claim that (0, . . . , 0) is the only solution to (3.3.5). Suppose, on the contrary, that

(y1, . . . , yn−1) #= (0, . . . , 0) is a solution to (3.3.5), and let r ∈ {1, . . . , n−1} be the largest

integer such that yr #= 0. Also, choose t ∈ {1, . . . , q} minimial such that

p̃tr,t = 0, p̃tr+1,t = 0, . . . , p̃(t+1)r−1,t = 0. (3.3.6)

Clearly t #= 1, as then p̃r,1 = yr = 0, a contradiction. Applying Lemma 3.3.2 with φ (and

maximality of r), examine the equation,

p̃(t+1)r−1,t = p̃(t+1)r−1,t−1 + · · · +
(

(t + 1)r − 1
r

)
yrp̃tr−1,t−1. (3.3.7)
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Using Lemma 3.3.3 (with a = t− 1) and the maximality of r, we have p̃tr+b,t−1 = 0 for

all b ∈ . Consequently, (3.3.7) and (3.3.6) imply that p̃tr−1,t−1 = 0. Repeating this

examination with p̃(t+1)r−2,t, p̃(t+1)r−3,t, . . . , p̃tr,t (in that order) in place of p̃(t+1)r−1,t on

the left-hand side of (3.3.7), it follows that p̃tr−i,t−1 = 0 for i = 1, . . . , r. This, of course,

contradicts the minimality of t and proves the claim.

It now follows from Lemma 3.2.3 that the variety determined by
{

P̃m,q = 0, . . . , P̃(q+1)(n−1)−1,q = 0
}

is zero-dimensional. An application of Proposition 3.2.2 completes the proof.

3.4 The Degree Bounds

In this section, we outline how to obtain the degree bounds in Theorem 3.1.3. We begin

by stating a useful theorem that bounds the cardinality of a variety by the product of

the degrees of the polynomials defining it (see [59] for more details).

Theorem 3.4.1 (Bezout’s theorem). Let K be an arbitrary field, and let f1, . . . , ft ∈
K[y1, . . . , yt]. If V (f1, . . . , ft) is finite, then

|V (f1, . . . , ft)| ≤
t∏

i=1

deg(fi).

We next make the following straightforward observation.

Lemma 3.4.2. Let K be a perfect field, and let I ⊂ K[y1, . . . , yt] be such that V (I) is

finite. Then, the degree of the minimal polynomial for each component of an element in

V (I) is bounded by the number of elements of V (I).

Proof. Suppose that g(x) ∈ K[x] is the irreducible polynomial for y ∈ K, a component

of (y1, . . . , y, . . . , yt) ∈ V (I). Since K is perfect, this polynomial has distinct roots.

Thus, there are deg(g) distinct embeddings σ : K(y) → K that are the identity on K.

Moreover, each of these homomorphisms extends to an embedding σ̃ : K → K [39, p.

233]. In particular, the deg(g) points, (σ̃y1, . . . , σ̃y, . . . , σ̃yt), are all distinct elements of

V (I). Thus, we must have

deg(g) ≤ |V (I)|.
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This completes the proof.

Theorem 3.4.3. Assuming the hypothesis as in Theorem 3.1.3, the degree of the poly-

nomial for Djy/y (j = 1, . . . , N1 − 1) over K in (1) is at most
(N2+N1−2

N1−1

)
.

Proof. Let N1 = n, N2 = m and set P̃m+k ∈ K[y1, . . . , yn−1] (k = 0, . . . , n − 2) to be

the polynomials in (3.3.2) after substitution of the linear forms, yn+i = Li(y1, . . . , yn−1).

Corresponding to the grading w(yj) = j, the weight of each monomial in P̃m+k is less

than or equal to m + k. Let S̃ be the set of all solutions with coordinates in K to the

system {P̃m+k = 0}n−2
k=0 . Our first goal is to bound the cardinality of S̃ by

(m+n−2
n−1

)
.

Suppose that {yi,1, . . . , yi,s} is the list of all s distinct i-th coordinates of mem-

bers of S̃. Since K is infinite, there exists ki ∈ K such that yi,j #= ki for j = 1, . . . , s. Now,

let x1, . . . , xn−1 be variables and consider the new polynomials Fm+k ∈ K[x1, . . . , xn−1]

produced by the substitution yi = xi
i +ki in the P̃m+k. As the n−1 equations P̃m+k = 0

define a zero-dimensional variety, so do the n− 1 equations Fm+k = 0.

Let S denote the set of all solutions with coordinates in K to the system

{Fm+k = 0}n−2
k=0 . Since the total degree of each Fm+k is just m + k, we have by Bezout’s

theorem (Theorem 3.4.1),

|S| ≤ (m + n− 2)!
(m− 1)!

= (n− 1)!
(

m + n− 2
n− 1

)
.

Consider the (set-theoretic) map ψ : S → S̃ given by

(x1, . . . , xn−1) -→ (x1 + k1, . . . , x
n−1
n−1 + kn−1).

It is easy to see that
∑

s∈S̃

∣∣ψ−1(s)
∣∣ = |S|. (3.4.1)

Let (y1, . . . , yn−1) ∈ S̃. By our choice of ki, the polynomial hi(xi) = xi
i + ki − yi has

precisely i distinct zeroes. These i roots are distinct since characteristic zero implies

that gcd(hi,
∂hi
∂x ) = 1. Hence,

∣∣ψ−1(s)
∣∣ ≥ (n− 1)! for all s ∈ S̃, and so from

|S̃|(n− 1)! ≤ |S| ≤
(

m + n− 2
n− 1

)
(n− 1)!,

we arrive at the desired bound on |S̃|.
An application of Lemma 3.4.2 now completes the proof.
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We should also note that the proof above generalizes to bound the number of

distinct solutions to certain systems of equations. Specifically, we have the following

interesting fact.

Theorem 3.4.4. Let w(yj) = j be the grading as above and let K be a field of char-

acteristic zero. Let m ∈ + and suppose that {Fm+k(y1, . . . , yn−1) = 0}n−2
k=0 is a zero-

dimensional system of polynomial equations over K such that each monomial in Fm+k

has weight less than or equal to m + k. Then, this system will have at most
(m+n−2

n−1

)

distinct solutions with coordinates in K.

In principle, the number of solutions for a generic system with conditions as in

Theorem 3.4.4 can be found by a mixed volume computation and Bernstein’s Theorem

(see [8], for instance). This approach, however, seems difficult to implement.

3.5 Applications to Nonlinear Differential Equations

In the proof of Theorem 3.1.3, it is clear that the important attributes of the recursions

as in (3.3.1) are that they reduce the degree and are polynomial in nature. In particular,

it was not necessary that they were linear. For example, the system,

yy′′′ + a(y′)2 + by2 = 0,

(1/y)′′ + c(1/y)′ + d(1/y) = 0

gives us the recurrence y3 + ay2
1 + b = 0 (divide the first equation by y2), which has

y3 expressible as a polynomial in y1, y2 with strictly smaller weight. Repeated differ-

entiation of this equation, preserves this property. In general, let h ∈ K[z1, . . . , zn]

be a homogeneous polynomial (with respect to total degree) such that each monomial

zα = zα1
1 · · · zαn

n has
n∑

i=1

(i− 1)αi < n.

If the hypothesis of Theorem 3.1.3 are weakened to allow y to satisfy an equation of the

form, Dny = h(y, Dy, . . . , D(n−1)y), then the proof applies without change. A general-

ization along these lines was also considered by Sperber in [61], however, the techniques

developed here give us degree bounds just as in Theorem 3.1.3.
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