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Abstract. Let K be a totally real number field with Galois closure L. We

prove that if f ∈ Q[x1, . . . , xn] is a sum of m squares in K[x1, . . . , xn], then f
is a sum of

4m · 2[L:Q]+1
“[L : Q] + 1

2

”
squares in Q[x1, . . . , xn]. Moreover, our argument is constructive and gen-
eralizes to the case of commutative K-algebras. This result gives a partial

resolution to a question of Sturmfels on the algebraic degree of certain semi-

definite programing problems.

1. Introduction

In recent years, techniques from semidefinite programming have produced nu-
merical algorithms for finding representations of positive semidefinite polynomials
as sums of squares. These algorithms have many applications in optimization, con-
trol theory, quadratic programming, and matrix analysis [18, 19, 21, 22, 23]. For a
noncommutative application of these techniques to a famous trace conjecture, see
the papers [1, 8, 13, 16] which continue on the work of [9].

One major drawback with these algorithms is that their output is, in general,
numerical. For many applications, however, exact polynomial identities are needed.
In this regard, Sturmfels has asked whether a representation with real coefficients
implies one over the rationals.

Question 1.1 (Sturmfels). If f ∈ Q[x1, . . . , xn] is a sum of squares in R[x1, . . . , xn],
then is f also a sum of squares in Q[x1, . . . , xn]?

It is well-known that a polynomial is a sum of real polynomial squares if and
only if it can be written in the form

(1.1) f = vTBv,

in which v is a column vector of monomials and B is a real positive semidefinite
(square) matrix [25]; in this case, the matrix B is called a Gram matrix for f . If B
happens to have rational entries, then f is a sum of squares in Q[x1, . . . , xn] (this
follows from a Cholesky factorization argument or from a matrix generalization of
Lagrange’s four square theorem [10]). Thus, in the language of quadratic forms,
Sturmfels is asking whether the existence of a positive semidefinite Gram matrix
for f ∈ Q[x1, . . . , xn] over the reals implies that one exists over the rationals.
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Although a complete answer to Question 1.1 is not known, Parrilo and Peyrl have
written an implementation of SOSTOOLS in the algebra package Macaulay 2 that
attempts to find rational representations of polynomials that are sums of squares
[20]. Their idea is to approximate a real Gram matrix B with rational numbers
and then project back to the linear space of solutions governed by equation (1.1).

The following result says that Question 1.1 has a positive answer in some “generic”
sense; it also explains the difficulty of finding counterexamples.

Theorem 1.2. Let f ∈ Q[x1, . . . , xn]. If there is an invertible Gram matrix B for
f , then there is a Gram matrix for f with rational entries.

Proof. Let B be a real positive semidefinite matrix and v a vector of monomials
such that f = vTBv. Consider the set L of real symmetric matrices S = ST = (sij)
of the same size as B for which f = vTSv. This space corresponds to the solutions
of a set of linear equations in the sij over Q. From elementary linear algebra
(Gaussian elimination), it follows that there is an integer k such that

L = {S0 + t1S1 + · · ·+ tkSk : t1, . . . , tk ∈ R}

for some rational symmetric matrices S1, . . . , Sk. The subset of matrices in L that
are positive definite is determined by a finite set of strict polynomial inequalities
in the t1, . . . , tk produced by setting all the leading principal minors to be positive
[11, p. 404]. By continuity, a real positive definite solution B guarantees a rational
one, and this completes the proof. �

Remark 1.3. The argument above shows that we may find a rational Gram matrix
of the same size as the original Gram matrix B. Is this true even if B is not
invertible? We suspect not.

Although the general case seems difficult, Question 1.1 has a positive answer for
univariate polynomials due to results of Landau [15], Pourchet [24], and (algorith-
mically) Schweighofer [29]. In fact, Pourchet has shown that at most 5 polynomial
squares in Q[x] are needed to represent every positive semidefinite polynomial in
Q[x], and this is best possible.

It follows from Artin’s solution to Hilbert’s 17th problem [26, Theorem 2.1.12]
that if f ∈ Q[x1, . . . , xn] is a sum of squares of rational functions in R(x1, . . . , xn),
then it is a sum of squares in Q(x1, . . . , xn). Moreover, from the work of Voevodsky
on the Milnor conjectures, it is known that 2n+2 such squares suffice [14, p. 530].
However, the transition from rational functions to polynomials is often a very del-
icate one. For instance, not every polynomial that is a sum of squares of rational
functions is a sum of squares of polynomials [14, p. 398].

More generally, Sturmfels is interested in the algebraic degree [17] of maximizing
a linear functional over the space of all sum of squares representations of a given
polynomial that is a sum of squares. In the special case of Question 1.1, a positive
answer signifies an algebraic degree of 1 for this optimization problem.

General theory (for instance, Tarski’s Transfer Principle for real closed fields [26,
Theorem 2.1.10]) reduces Question 1.1 to one involving real algebraic numbers. In
this paper, we present a positive answer to this question for a special class of fields.

Recall that a totally real number field is a finite algebraic extension of Q all of
whose complex embeddings lie entirely in R. For instance, the field Q(

√
d) is totally

real for positive, integral d. Our main theorem is the following.
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Theorem 1.4. Let K be a totally real number field with Galois closure L. If
f ∈ Q[x1, . . . , xn] is a sum of m squares in K[x1, . . . , xn], then f is a sum of

4m · 2[L:Q]+1

(
[L : Q] + 1

2

)
squares in Q[x1, . . . , xn].

Our techniques also generalize naturally to the following situation. Let R be a
commutative Q-algebra and let K be a totally real number field. Also, set S :=
R ⊗Q K, which we naturally identify as a ring extension of R = R ⊗Q Q. If f is a
sum of the form

f =
m∑
i=1

p2
i , pi ∈ R,

then we say that f is a sum of squares over R. It is a difficult problem to determine
those f which are sums of squares over R. In this setting, Theorem 1.4 generalizes
in the following way.

Theorem 1.5. Let K be a totally real number field with Galois closure L. If f ∈ R
is a sum of m squares in R⊗Q K, then f is a sum of 4m · 2[L:Q]+1

(
[L:Q]+1

2

)
squares

over R.

Remark 1.6. One can view Theorem 1.5 as a “going-down” theorem [4] for certain
quadratic forms over the rings R and R ⊗Q K. We do not know how much the
factor 2[L:Q]+1

(
[L:Q]+1

2

)
can be improved upon, although we suspect that for poly-

nomial rings, it can be improved substantially. We remark that it is known [2] that
arbitrarily large numbers of squares are necessary to represent any sum of squares
over R[x1, . . . , xn], n > 1, making a fixed bound (for a given n) as in the rational
function case impossible.

Our proof of Theorem 1.4 is also constructive.

Example 1.7. Consider the polynomial

f = 3− 12y − 6x3 + 18y2 + 3x6 + 12x3y − 6xy3 + 6x2y4.

This polynomial is a sum of squares over R[x, y]. To see this, let α, β, γ ∈ R be the
roots of the polynomial u(x) = x3 − 3x+ 1. Then, a computation reveals that

f = (x3 + α2y + βxy2 − 1)2 + (x3 + β2y + γxy2 − 1)2 + (x3 + γ2y + αxy2 − 1)2.

Using our techniques, we can construct from this representation one over Q:(
x3 + xy2 + 3y/2− 1

)2
+
(
x3 + 2y − 1

)2
+
(
x3 − xy2 + 5y/2− 1

)2
+
(
2y − xy2

)2
+ 3y2/2 + 3x2y4.

This example will be revisited many times in the sequel to illustrate our proof. �

We believe that in Theorem 1.4 the field K may be replaced by any real algebraic
extension of the rationals (thus giving a positive answer to Sturmfels’ question);
however, our techniques do not readily generalize to this situation. We shall discuss
the obstructions throughout our presentation.

The organization of this paper is as follows. In Section 2, we set up our no-
tation and state a weaker (but still sufficient) version of our main theorem. Sec-
tion 3 describes a matrix factorization for Vandermonde matrices. This construc-
tion is applied in the subsequent section to reduce the problem to the case K =
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Q(
√
l1, . . . ,

√
lr) for positive integers lk. Finally, the proof of Theorem 1.4 is com-

pleted in Section 5. For simplicity of exposition, we shall focus on the polynomial
version of our main theorem although it is an easy matter to translate the techniques
to prove the more general Theorem 1.5.

We would like to thank T. Y. Lam, Bruce Reznick, and Bernd Sturmfels for
interesting discussions about this problem. We also thank the anonymous referee
for several suggestions that improved the exposition of this work.

2. Preliminaries

An equivalent definition of a totally real number field K is that it is a field
generated by a root of an irreducible polynomial u(x) ∈ Q[x], all of whose zeroes
are real. For instance, the field K = Q(α, β, γ) = Q(α) arising in Example 1.7 is a
totally real (Galois) extension of Q in this sense. A splitting field of u(x) (a Galois
closure of K) is also totally real, so we lose no generality in assuming that K is
a totally real Galois extension of Q. We will therefore assume from now on that
K = Q(θ) is Galois and that θ is a real algebraic number, all of whose conjugates
are also real. We set r = [K : Q] and let G be the Galois group Gal(K/Q). For the
rest of our discussion, we will fix K = Q(θ) with these parameters.

We begin by stating a weaker formulation of Theorem 1.4. For the purposes of
this work, a rational sum of squares is a linear combination of squares with positive
rational coefficients.

Theorem 2.1. Let K be a totally real number field that is Galois over Q. Then
for any p ∈ K[x1, . . . , xn], the polynomial

f =
∑
σ∈G

(σp)2

can be written as a rational sum of 2[K:Q]+1
(
[K:Q]+1

2

)
squares in Q[x1, . . . , xn].

Remark 2.2. Elements of the form
∑
σ∈G(σp)2 are also sometimes called trace forms

for the field extension K [14, p. 217].

It is elementary, but important that this result implies Theorem 1.4.

Proof of Theorem 1.4. Let f =
∑m
i=1 p

2
i ∈ Q[x1, . . . , xn] be a sum of squares with

each pi ∈ K[x1, . . . , xn]. Summing both sides of this equation over all actions of
G = Gal(K/Q), we have

f =
1
|G|

m∑
i=1

∑
σ∈G

(σpi)2.

The conclusions of Theorem 1.4 now follow immediately from Theorem 2.1 and
Lagrange’s four square theorem (every positive rational number is the sum of at
most four squares). �

Remark 2.3. This averaging argument can also be found in the papers [3, 6].

We will focus our remaining efforts, therefore, on proving Theorem 2.1.
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3. Vandermonde Factorizations

To prepare for the proof of Theorem 2.1, we describe a useful matrix factor-
ization. It is inspired by Ilyusheckin’s recent proof [12] that the discriminant of
a symmetric matrix of indeterminates is a sum of squares, although it would not
surprise us if the factorization was known much earlier.

Let A = AT be an r × r symmetric matrix over a field F of characteristic not
equal to 2, and let y1, . . . , yr be the eigenvalues of A in an algebraic closure of F .
Also, let Vr be the Vandermonde matrix

Vr =


1 1 · · · 1
y1 y2 · · · yr
...

...
. . .

...
yr−1
1 yr−1

2 · · · yr−1
r

 .
The matrix B = VrV

T
r has as its (i, j)th entry the (i+ j− 2)th Newton power sum

of the eigenvalues of A:
r∑

k=1

yi+j−2
k .

Since the trace of Am is also the mth Newton power sum of the yk, it follows that
we may write B = [tr(Ai+j−2)]ri,j=1 ∈ F r×r. We next give another factorization of
B in the form CCT .

Let Eij be the r×r matrix with a 1 in the (i, j) entry and 0’s elsewhere. A basis
for r × r symmetric matrices is then given by the following

(
r+1
2

)
matrices:

{Eii : i = 1, . . . , r} ∪ {(Eij + Eji)/
√

2 : 1 ≤ i < j ≤ r}.
For example, the “generic” symmetric 2× 2 matrix

(3.1) A =
[
x11 x12

x12 x22

]
,

with entries in the field F = Q(x11, x12, x22), is represented in this basis as

x11

[
1 0
0 0

]
+ x22

[
0 0
0 1

]
+
√

2 · x12

[
0 1/

√
2

1/
√

2 0

]
.

This basis is useful since the inner product of two symmetric matrices P and Q
with respect to this basis is simply tr(PQ), as one can easily check.

Express the powers Am in terms of this basis and place the vectors of the co-
efficients as rows of a matrix C. The entries of the r ×

(
r+1
2

)
matrix C will be in

F [
√

2]. Our construction proves the formal identity

(3.2) VrV
T
r = [tr(Ai+j−2)]ri,j=1 = CCT .

Example 3.1. With A given by (3.1), the factorization reads:[
1 1
y1 y2

] [
1 y1
1 y2

]
=
[

1 1 0
x11 x22

√
2 · x12

] 1 x11

1 x22

0
√

2 · x12

 .
Algebraically, this equation reflects the fact that for a 2× 2 symmetric matrix A,

tr(A) = x11 + x22,

tr(A2) = tr(A)2 − 2 det(A) = x2
11 + x2

22 + 2x2
12.
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�

In the next section, we will use the matrix factorization (3.2) to replace a Gram
matrix over Q(y1, . . . , yr) with one over a much smaller field.

4. Symmetric matrices with prescribed characteristic polynomial

Let K = Q(θ) be totally real and Galois, and set σ1, . . . , σr to be the elements
of Gal(K/Q). Given p ∈ K[x1, . . . , xn], we may express it in the form

p =
r−1∑
i=0

qiθ
i,

for elements qi ∈ Q[x1, . . . , xn]. With this parameterization, the sum

∑
σ∈G

(σp)2 =
r∑
j=1

(
r−1∑
i=0

qi(σjθ)i
)2

appearing in the statement of Theorem 2.1 may be written succinctly as
(4.1) q0

...
qr−1


T


1 · · · 1
σ1θ · · · σrθ

...
. . .

...
(σ1θ)r−1 · · · (σrθ)r−1


 1 σ1θ . . . (σ1θ)r−1

...
...

. . .
...

1 σrθ . . . (σrθ)r−1


 q0

...
qr−1

 .
Let Vr be the Vandermonde matrix appearing in equation (4.1). We would like

to construct a factorization as in (3.2) to replace the elements of K with numbers
from Q(

√
2). To apply the techniques of Section 3, however, we must find an r× r

symmetric matrix A whose eigenvalues are σ1θ, . . . , σrθ (the roots of the minimal
polynomial for θ over Q). A necessary condition is that these numbers are all real,
but we would like a converse. Unfortunately, a converse with matrices over Q is
impossible. For the interested reader, we include a proof of this basic fact.

Proposition 4.1. There is no rational, symmetric matrix with characteristic poly-
nomial u(x) = x2 − 3.

Proof. We argue by way of contradiction. Let

A =
[
a b
b c

]
, a, b, c ∈ Q,

and suppose that

u(x) = det(xI −A) = x2 − (a+ c)x+ (ac− b2).

It follows that there are rational numbers a and b such that a2+b2 = 3. Multiplying
by a common denominator, one finds that there must be integer solutions u, v, w
to the diophantine equation

(4.2) u2 + v2 = 3w2.

Recall from elementary number theory that a number n is the sum of two integral
squares if and only if every prime p ≡ 3 (mod 4) that appears in the prime factor-
ization of n appears to an even power. This contradiction finishes the proof. �
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If we allow A to contain square roots of rational numbers, however, then there
is always such a symmetric A. This is the content of a result of Fiedler [5]. We
include his proof for completeness.

Theorem 4.2 (Fiedler). Let u(x) ∈ C[x] be monic of degree r and let b1, . . . , br be
distinct complex numbers such that u(bk) 6= 0 for each k. Set v(x) =

∏r
k=1(x− bk)

and choose any complex numbers d1, . . . , dr and δ that satisfy

δv′(bk)d2
k − u(bk) = 0, k = 1, . . . , r.

Let d = [d1, . . . , dr]T and B = diag(b1, . . . , br). Then the symmetric matrix

A = B − δddT

has characteristic polynomial equal to u(x).

Proof. Applying the Sherman-Morrison formula [7, p. 50] for the determinant of a
rank 1 perturbation of a matrix, we have

det(xI −A) = det(xI −B) + δ det(xI −B)dT (xI −B)−1d

=
r∏

k=1

(x− bk) + δ

r∑
k=1

d2
k

r∏
i=1,i6=k

(x− bi).
(4.3)

Since the monic polynomial det(xI−A) and u(x) agree for x = b1, . . . , br, it follows
that they are equal. �

Remark 4.3. There are simpler, tridiagonal matrices which can replace the matrix
A (see [28]); however, square roots are still necessary to construct them.

The following corollary allows us to form a real symmetric matrix with charac-
teristic polynomial equal to the minimal polynomial for θ over Q.

Corollary 4.4. If u(x) ∈ Q[x] is monic of degree r and has r distinct real roots,
then there are positive rational numbers l1, . . . , lr and a symmetric matrix A with
entries in Q(

√
l1, . . . ,

√
lr) such that the eigenvalues of A are the roots of u(x).

Proof. Let b1, . . . , br−1 be rational numbers such that exactly one bi is (strictly)
between consecutive roots of u(x), and let br be a rational number either smaller
than the least root of u(x) or greater than the largest root of u(x). Also, set
δ ∈ {−1, 1} such that lk = δu(bk)/v′(bk) is positive for each k. The corollary now
follows from Theorem 4.2 by setting dk =

√
lk for each k. �

Example 4.5. Consider the polynomial u(x) = x3 − 3x + 1 from Example 1.7.
Choosing (b1, b2, b3) = (0, 1, 2) and δ = 1, we have d = [

√
2/2, 1,

√
6/2]T and

A =

 −1/2 −
√

2/2 −
√

3/2
−
√

2/2 0 −
√

6/2
−
√

3/2 −
√

6/2 1/2

 .
One can easily verify that the characteristic polynomial of A is u(x). �

Combining Corollary 4.4 and the construction found in Section 3, we have proved
the following theorem.
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Theorem 4.6. Let K be a totally real Galois extension of Q and set r = [K : Q].
Then for any p ∈ K[x1, . . . , xn], there are positive integers l1, . . . , lr such that∑

σ∈G
(σp)2 = qTCCT q,

in which q is a vector of polynomials in Q[x1, . . . , xn] and C is an r×
(
r+1
2

)
matrix

with entries in F = Q(
√
l1, . . . ,

√
lr,
√

2).

To illustrate the computations performed in the proof of Theorem 4.6, we present
the following.

Example 4.7. We continue with Example 4.5. Let α ∈ R be the root of u(x)
with α ∈ (1, 2). Then, setting β = 2 − α − α2 and γ = α2 − 2, we have u(x) =
(x−α)(x− β)(x− γ). The Galois group of K = Q(α) is cyclic and is generated by
the element σ ∈ G such that σ(α) = β. If we let v = [x3 +2xy2−1,−xy2, y−xy2]T ,
then the factorization obtained by Theorem 4.6 is given by

f = vT



1 −1/2 3/2
1 0 2
1 1/2 5/2
0 −1 2
0 −

√
6/2

√
6/2

0 −
√

3 0



T 

1 −1/2 3/2
1 0 2
1 1/2 5/2
0 −1 2
0 −

√
6/2

√
6/2

0 −
√

3 0

v.

One can check that this factorization already produces the rational sum of squares
representation we encountered in Example 1.7. �

We note that when K is an arbitrary number field, Galois over Q, our approach
still produces a result similar in spirit to Theorem 4.6. The only difference is that
we must allow negative integers lk in the statement.

Theorem 4.8. Let K be a finite Galois extension of Q and set r = [K : Q]. Then
for any p ∈ K[x1, . . . , xn], there are integers l1, . . . , lr such that∑

σ∈G
(σp)2 = qTCCT q,

in which q is a vector of polynomials in Q[x1, . . . , xn] and C is an r×
(
r+1
2

)
matrix

with entries in F = Q(
√
l1, . . . ,

√
lr,
√

2).

The following corollary is the closest we come to answering Sturmfels’ question
in the general case. It follows from applying Theorem 4.8 in the same way that
Theorem 4.6 will be used below to prove Theorem 5.1.

Corollary 4.9. Let K be a finite extension of Q. If f ∈ Q[x1, . . . , xn] is a sum
of squares over K[x1, . . . , xn], then it is a difference of two sums of squares over
Q[x1, . . . , xn].

Example 4.10. Consider the degree 2 field extension K = Q(i
√

2), which is the
splitting field of u(x) = x2 + 2. One can check that setting (b1, b2) = (0, 1), δ = −1,
and d = [

√
2, i
√

3]T in Theorem 4.2 produces the symmetric matrix

A =
[

2 i
√

6
i
√

6 −2

]
.
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It follows that the 2×2 Vandermonde matrix V2 as in (4.1) satisfies V2V
T
2 = CCT ,

in which

C =
[

1 1 0
2 −2 2i

√
3

]
.

This calculation expresses the polynomial f = (x + i
√

2y)2 + (x − i
√

2y)2 as the
difference

f = (x+ 2y)2 + (x− 2y)2 − 12y2.

�

5. Proof of Theorem 2.1

In this section, we complete the proof of our main theorem. The results so far
show that if f is a sum of m squares in K[x1, . . . , xn] for a totally real field K,
Galois over Q, then f is a sum of m ·

(
[K:Q]+1

2

)
squares in L[x1, . . . , xn], where

L = Q(
√
l1, . . . ,

√
lr,
√

2) for some positive integers lk. The proof of Theorem 2.1 is
thus complete if we can show the following.

Theorem 5.1. Let l1, . . . , lr+1 be positive integers and set L = Q(
√
l1, . . . ,

√
lr+1).

If f ∈ Q[x1, . . . , xn] is a sum of s squares in L[x1, . . . , xn], then f is a rational sum
of at most s · 2r+1 squares in Q[x1, . . . , xn].

Proof. Let l be a positive integer and let L = F (
√
l) be a quadratic extension of a

field F of characteristic 0. We shall prove: If f ∈ F [x1, . . . , xn] is a rational sum
of s squares in L[x1, . . . , xn], then f is a rational sum of at most 2s squares in
F [x1, . . . , xn]. The theorem then follows by repeated application of this fact.

If L = F , then there is nothing to prove. Otherwise, let σ ∈ Gal(L/F ) be such
that σ(

√
l) = −

√
l, and let f ∈ F [x1, . . . , xn] be a sum of s squares in L[x1, . . . , xn]:

f =
s∑
i=1

p2
i =

1
2

s∑
i=1

(
p2
i + (σpi)2

)
.

It therefore suffices to prove that for fixed p ∈ L[x1, . . . , xn], the element p2 + (σp)2

is a rational sum of 2 squares. Finally, writing p = a+ b
√
l for a, b ∈ F [x1, . . . , xn],

we have that
(a+ b

√
l)2 + (a− b

√
l)2 = 2a2 + 2lb2.

This completes the proof. �
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