UNIQUENESS OF WORD EQUATIONS IN TWO POSITIVE DEFINITE LETTERS

CHRISTOPHER J. HILLAR

Abstract

It is shown that the word equation $X B X^{3} B X=P$ has a unique $n \times n$ positive definite solution X for each pair of $n \times n$ positive definite P and B.

1. Introduction

We describe a recent idea by Jimmie Lawson and Yongdo Lim [3] of using the Reimannian metric for proving unique solvability of word equations. We first recall a classical result.

Theorem 1.1 (Banach's Fixed-Point Theorem). If M is a complete metric space and $f: M \rightarrow M$ is a contraction mapping, then there exists a unique fixed-point for f.

Theorem 1.2 (Lawson and Lim). The symmetric word equation $X B X^{3} B X=P$ has a unique $n \times n$ positive definite solution X for each pair of $n \times n$ positive definite P and B.

Proof. Let M be the set of $n \times n$ positive definite matrices. Fix $B, P \in M$ and define a map $f: M \rightarrow M$ implicitly as the unique positive definite solution $f(X)$ to the equation

$$
f(X) B f(X) X f(X) B f(X)=P
$$

We first verify that f is indeed well-defined. Given a positive definite matrix X, the equation $Y X Y=P$ has a unique solution $Y=X^{-1} \# P$ (see [2]) that involves the arithmetic-geometric mean $C \# D$ for two positive definite matrices C and D :

$$
C \# D=D \# C=C^{1 / 2}\left(C^{-1 / 2} D C^{-1 / 2}\right)^{1 / 2} C^{1 / 2}
$$

In turn, given a positive definite Y, the equation, $Y=f(X) B f(X)$ has a unique solution $f(X)=B^{-1} \# Y$. Collecting these facts, we find that

$$
f(X)=B^{-1} \#\left(X^{-1} \# P\right)
$$

defines f uniquely.
Fixed-points of the map f are in one-to-one correspondence with solutions to the word equation $X B X^{3} B X=P$. We next verify that f is a contraction mapping with the complete Reimannian metric $d(\cdot, \cdot)$ on M (see, for instance, [4]):

$$
d(C, D)=\left(\sum_{i=1}^{n} \ln ^{2} \lambda_{i}\right)^{1 / 2}
$$

in which λ_{i} are the eigenvalues of $C^{-1} D$. It is easily verified that $d(\cdot, \cdot)$ is invariant under positive definite congruence and inversion. Additionally, it is known that $d\left(C^{1 / 2}, D^{1 / 2}\right) \leq \frac{1}{2} d(C, D)$ (see [5]). Thus,

$$
d(f(X), f(Y)) \leq \frac{1}{2} d\left(P \# X^{-1}, P \# Y^{-1}\right) \leq \frac{1}{4} d(X, Y)
$$

and f is a contraction. Finally, we invoke Banach's Fixed-Point Theorem to finish the proof.

References

[1] E. Andruchow, G. Corach, D. Stojanoff, Geometrical significance of Lwner-Heinz inequality, Proc. Amer. Math. Soc. 128 (2000), 1031-1037.
[2] C. Hillar and C. R. Johnson, Symmetric word equations in two positive definite letters, Proc. Amer. Math. Soc. 132 (2004), 945-953.
[3] J. Lawson and Y. Lim, private communication, 2005.
[4] M. Moakher, The geometric mean, matrices, metrics, and more, Amer. Math. Monthly 108 (2001), 797-812.
[5] R. Bhatia, On the exponential metric increasing property, Lin. Alg. Appl., 375 (2003), 211220

