RELATIONS BETWEEN WORDS IN TWO POSITIVE DEFINITE
MATRICES
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ABSTRACT. A generalized word in two letters A and B is an expression of
the form W (A, B) = AP1 B91 AP2 B92 ... APk BPk APk+1 in which p;,q; are real
numbers such that p;,q; # 0, ¢ = 1,...,k, and pgy1 is arbitrary. We are
interested when positive definite (complex Hermitian) matrices are substituted
for A and B in the word W (A, B). Specifically, it is shown that two non-
identical generalized words cannot define the same function on the set of 2-by-
2 positive definite matrices. A corollary is that a generalized word is positive
definite for all positive definite A and B if and only if the word is symmetric
(“palindromic”). This elaborates upon a remark made in a previous work by
the author concerning positive definite word equations.

1. INTRODUCTION

A generalized word (g-word, for short) W = W(A, B) in two letters A and
B is an expression of the form W = AP1B% APz B% ... APk B9k APk+1 in which
the exponents p; and ¢; are real numbers such that p;,q; # 0, ¢ = 1,...,k,
and pg41 is an arbitrary real number. The reversal of the g-word W is W* =
APk+1 Bk APk ... B92 AP2 B:t AP1 and a g-word is symmetric if it is identical to its
reversal (in other contexts, the name “palindromic” is also used). We will call a
g-word, W, A-positive if all exponents of A in W are positive.

We are interested in the matrices that result when the two letters are positive
definite (complex Hermitian) n-by-n matrices. To make sure that W is well-defined
after substitution, we take primary powers (see [4, p. 433] and [4, p. 413]). That
is, given p € R\{0}, a unitary matrix U, and a nonnegative diagonal matrix D, we
have (UDU*)? = UDPU*.

In [1], building on the work of [5], the authors study a certain type of matrix
equation involving A-positive symmetric g-words.

Definition 1.1. A symmetric word equation is an equation, S(A, B) = P, in which
S(A, B) is an A-positive symmetric g-word. If B and P are given positive definite
matrices, any positive definite matrix A for which the equation holds is called a
solution to the symmetric word equation.

A symmetric word equation is called solvable if there exists a solution for every
pair of positive definite n-by-n B,P. The main result of [1] is the following general
fact.

Theorem 1.2. Fvery symmetric word equation is solvable.
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The purpose of this note is to explain the significance of the symmetric restric-
tion in the definition of “symmetric word equation.” Specifically, we prove that a
generalized word is positive definite for all positive definite A and B if and only if
the word is symmetric.

2. RELATIONS BETWEEN POSITIVE DEFINITE WORDS

We begin by illustrating some of the subtlety of the problem. Let B and P be
positive definite matrices. Then, it is known [5] that

pl/2 (P71/2BP71/2)1/2 pl/2 _ gi/2 (371/213371/2) Y

2
BI/Q,

even though both expressions appear to be quite different. In fact, both sides of

the above equality are the unique solution A to the symmetric word equation,

S(A,B)=AB 'A=P.

Fortunately, such behavior does not occur with g-words, as the following fact
illustrates. The idea for the argument was inspired from a calculation made in [2].

Theorem 2.1. A generalized word W (A, B) is equal to the identity matriz for all
substitutions of 2-by-2 positive definite A and B if and only if W is the empty word.

Proof. Let W = AP1 BT AP2 B9 ... APk B9k APk+1 in which p;,q; are real numbers
such that p;,q; #0,i=1,..., k. f W = AP* (k = 0), then W is the identity if and
only if p; = 0 or A = I (by the uniqueness of taking positive definite p* roots).
Therefore, we may assume that k& > 1. Furthermore, by performing a similarity
using the last letter, we may also suppose that W = AP B9 AP2 B92 ... APk B in
which p;,q; # 0.

We will show, by way of contradiction, that W cannot be the identity matrix for
all 2-by-2 positive definite A and B. First, notice that at least one of the p; must
be negative since setting B = I and A # I gives a contradiction. Next, let

o[30) e[

for some € > 0. An easy computation shows that the matrix

(2.1) Qqu <o qie_(zpj@ Pt q; <0 qJ)Apl B9 AP2 B4z ... APk Bk

is the product of 2k matrices the (25 — 1)-st of which is [ (1) egj

:l ifpj>00r

eri 0], . o[ 24e 17277
[ 0 1]1fp]<0, and the 2j-th of which is [ 1/2 1/2] if g; > 0 or
/2 —1/2 7%, -
[_1/2 1/2—|—e] ifg;<0,5=1,... k.
Thus, the limit of (2.1) for ¢ — 0 exists and equals
(2.2) PQ1 Q2 - - PQ,
o [t o], . o[22
where P; is P = 0 0 1pr>OandI—P1fp]<O,andelsQ—[1/2 1/2]

if g >0and I —Q if ¢g; <O.
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Assuming that the word W is the identity matrix for all A,B, it follows that for
all € > 0, expression (2.1) is just 925 <0 % ¢~ (p;<oPitoq;<09) [ Gince the limit of
(2.1) exists, it must agree with

lim 2% a<0% ~(Cp <oPitig<o®)y _ 0

e—0
(since —(ij<0 pj + qu<0 gj) > 0). Finally, Lemma 2.2 below shows that (2.2)
can never be zero, a contradiction that finishes the proof. O

Lemma 2.2. Let P;,Q; be letters (i =1,...,k), and let W be a word with alter-
nating P;’s and Q;’s (e.g. PiQ1PaQa - PrQr, Q1PaQ2 - PrQy). Then, for all

substitutions of the P; from the set { { (1) 8 ] , { 8 (1) } } and the Q; from the set

1 1 1 -1
{[1 1},{_1 1 }},weneverhavewo.

Proof. Let M be the matrix produced after substitution of the letters P;, Q; into a
word W as in the statement of the lemma. We claim that M # 0. Indeed, suppose
that M = 0; we will derive a contradiction. By multiplying (if necessary) M on the
(1) 8 }, we may assume that W ends in the letter P,. Let v = [z,y]T
and suppose that W begins with ;. Then, the only possible outcomes for Mwv
are: [+, +x|T, [o, F2|T, [y, £y]T, [y, Fy]T. Similarly, if W begins with Py,
then Mwv must be one of the following: [+x,0]T, [0, £2]T, [£y, 0]7, [0, £y]T. These
statements are easily proved by induction on the length of the word W. It is
therefore clear that one can choose x and y such that Mwv # 0. This contradiction
completes the proof of the lemma. ([

right by [

‘We now list some corollaries to Theorem 2.1.

Corollary 2.3. If two generalized words are equal for all 2-by-2 substitutions of
positive definite A and B, then they are identical.

Proof. Clear from Theorem 2.1. O

Corollary 2.4. The following are equivalent for a generalized word W .

(1) W is positive definite for all substitutions of positive definite A and B
(2) W is Hermitian for all substitutions of positive definite A and B
(3) W is Hermitian for all 2-by-2 substitutions of positive definite A and B
(4) W is symmetric (“palindromic”)
In particular, if a generalized word is Hermitian for all 2-by-2 substitutions of
positive definite A and B, then the word is necessarily positive definite for all such
substitutions.

Proof. (1) = (2) = (3) is clear. If W (A, B) is always Hermitian for 2-by-2 positive
definite A and B, then W(A, B)* = W(A, B) for all such A and B. But then
Corollary 2.3 says that W* and W must be identical as words. It follows that W
is symmetric. This proves (3) = (4). Finally, if W is symmetric, an elementary
congruence argument (see, for instance, [1] or [3, p. 223]) shows that W will always
be positive definite for any positive definite A and B. This completes the proof. O
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