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1. INTRODUCTION

Consider the problem [1]:

minimize fo(x)
subject to f;(x) <0
hi(x) = 0.
where fo(x) is a convex function and the h;(z) are affine. Set D to be the intersection of

the domains of the f;. We set p* to be the solution to this minimization problem.
Define the Lagrangian associtated to the problem to be

Lz, A\, v) = folz) + Z Aifi(z) + Z vihi(z).

The A and v are called dual variables.
We would like to minimize this function over the domain:

g\ v) = ggiij(:B,)\, v).
We define the domain of g to be those points for which g is not —oo:
dom g = {(\,v) : g(\,v) > —o0}.
Theorem 1.1. When X\ > 0, we have
g\ v) <p".
Proof. Clearly, g(\,v) < L(x, A\,v) for all x € D. In particular, for feasible z, we have
g(A,v) < fo(®),
since A are all nonnegative and h;(Z) = 0. O

It follows that we can obtain a lower bound on p* by solving the following optimiza-
tion problem, called the Lagrange dual problem associated to the original optimization
problem:

maximize g(\, v)
subject to A > 0.
We will denote the answer to this problem as d*. Of course, we have
d <p",
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a property we call weak duality. This turns out to be a convex optimization problem since
the objective to be maximized is concave and the constraint is convex. This concavity
can be proved directly using the fact that the infimum of a sum is greater than or equal
to the sum of the infimums.

2. STRONG DUALITY

Under mild conditions, we show that both optimization problems have the same solu-
tion; that is, d* = p*.
To begin, we define the set

A:{(u7v7t):3xepa fl(m) Sui? izla"'ama hi(x)zvia 2217 oD, fo(l') St},

which is convex since each of the f;(x) are convex functions.
The optimal solution to our original problem is:

p* =inf {t:(0,0,t) € A}.
Next, notice that if A > 0,

g\ v) = inf {(u,v, )\, v, )T : (u,v,t) € A}.
If A >0 and v are given and g(\,v) is finite, then
(2.1) (uw, 0, )(A\, v, )T > g(A,v)

defines a (nonvertical) supporting hyperplane (really, half-space) to \A.
In particular, since (0,0, p*) € bd A, we have

p*=(A\v, 1)7(0,0,p) > g(A,v).
To rephrase in this language, Strong duality holds if and only if we have equality in
equation (2.1).
3. SLATER’S CONSTRAINT QUALIFICATION

Definition 3.1 (Slater’s Condition). There ezists an & € relint D with f;(Z) < 0 for
1=1,...,m and AT = b.

In other words, there exists a strictly feasible point.
Theorem 3.2. Slater’s condition implies strong duality.

Proof sketch. Assume for simplicity that relint D = int D and that A has full rank p.
Consider the following (convex) set
B={(0,0,s) e R" xR x R:s<p*},
which is obviously disjoint from .A. .
By the separating hyperplane theorem, there exists (A, 7, 1) # 0 and « such that
(u,v,t) € A= udT + 0" +tu > a,
and B
(u,v,t) € B=ul" + 00" +tp < a,

This implies that A > 0, by the first equation (since A is closed under u getting larger),
and p > 0, by the second, which says that ut < a for all ¢ < p* and thus up* < a.
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For any x € D, we have

(f1<l'>, R fm(x)7 hl(x)a s 7hp(x)v fO(x)) € -’47
and therefore by the first inequality, it follows that

(3.1) Z Nifi(x) + v(Az — b) + pfo(z) > o > pp’.

We proceed in two cases.
Case 1: > 0. Dividing (3.1) by u, we obtain

Lz, M, v/p) = ",

for all x € D. Thus, minimizing over z, it follows that g(\,v) > p* where A\ = 5\/,u and
v = v/u. By weak duality, we have g(\,v) = p*.
Case 1: u = 0. Using (3.1), it follows that for & satisfying Slater’s condition, we have

SR 20
=1

and therefore A = 0 since all f;(#) < 0 and X\ > 0. From (X, 7, 1) # 0 and A = = 0, we
conclude that 7 # 0. Thus, (3.1) implies that
v(Az —b) > 0.

By assumption, 7(AZ — b) = 0, and since Z € int D, it follows that there exists a per-
turbation x € D such that (Az — b) < 0 unless #A = 0. This contradicts the fact that
rank(A) = p. O
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