
AN INTRODUCTION TO MAPLE

CHRISTOPHER J HILLAR

Introduction

This document introduces Maple, a commercial computer program for mathematical
computation. You can learn about Maple from its website http://www.maplesoft.com/.
The numerical, symbolic, and graphical features of Maple are prodigious; as such, its
usefulness to the working mathematician goes without saying. This guide is meant to be
a gentle introduction to some of the powerful features that this system provides.

Once installed, you cay run Maple either in shell mode by typing maple in a terminal or
by typing xmaple which runs Maple in a graphical user interface. As with most high-level
computer systems, Maple has its own programming language that allows users to make
their own functions and libraries, building on Maple’s internal procedures.

At the end of this document are several exercises of varying levels of difficulty.

Acknowledgments

This tutorial is modeled after the Singular tutorial by Luis Garcia.

1. First steps

Once Maple is started, it awaits an input after the prompt >. Every statement has to
be terminated by ; (or : if you would like to suppress printing the output).

5^2+2*3-1;

30

The symbol # is used by Maple to indicate a comment, and any text following it is
disregarded when executing the line.

All objects have a type, however, unlike some other systems (such as Singular), Maple
keeps track of types internally (there is an exception when one uses Maple’s programming
language; we will see this later on). This might create some confusion when different types
interact (and it does), but in general, Maple’s type conversion decisions are pretty good.

An assignment is done with the symbol :=, while comparison is accomplished by using
the symbols = or <> along with the function evalb (again, this will change slightly when
programming).

text := "Hello World!":

print(text);

evalb(text = "Hello World!");

num1 := 42.000:

num2 := 42:

evalb(num1 <> num2);
1

2 CHRISTOPHER J HILLAR

convert(num1 + num2,string);

"Hello World!"

true

false

"84.000"

The last displayed result is always available with the symbol % (second to last with %%
and so on). This is particularly useful if you are doing an long interactive computation
and you forgot to store the result in a variable.

z3 := 3:

f := (x-z1)*(x-z2)*(x-z3);

eval(f,{x=z1});

eval(f,{z1=t,z2=2});

eval(%,{x=4});

g := expand(%%);

sort(collect(g,x),x);

f := (x - z1) (x - z2) (x - 3)

0

(x - t) (x - 2) (x - 3)

8 - 2t

g := x^3 - 5 x^2 + 6 x - t x^2 + 5 t x - 6 t

x^3 + (-t - 5) x^2 + (5 t + 6) x - 6 t

The previous example shows many Maple features which are worth describing. The
first line defines a variable z3 to be the integer 3 (and suppresses the output). Next, a
polynomial expression in the variables x, z1, z2, and z3 is defined using the variable f .
Notice that Maple understands that z3 has already been assigned, and thus it replaces
each instance of z3 with this value. Unlike Singular, Maple needs no ring declarations; you
can bring any variables you choose into the worksheet at any time.

In the next line, the function is eval is used to take an expression and evaluate it upon
substitution of variables with other expressions (possibly involving other variables). In this
case, we see that f evaluates to 0 when x = z1. It is important to realize that the function
eval does not change f in any way, which gives us its versatility. The command expand

takes an expression and returns its most, well, expanded form. Finally, we have used the
two functions collect and sort to visualize the polynomial g as an expression in x with
the coefficients (in t) collected.

We should remark that this last line could also have been generated by making a call to
the useful function coeff:

coeff(g,x,3)*x^3 + coeff(g,x,2)*x^2 + coeff(g,x,1)*x + coeff(g,x,0);

x^3 + (-t - 5) x^2 + (5 t + 6) x - 6 t

The best way to learn Maple is to read the online documentation either through Maple’s
web site or through the many tutorials on the web. Within the program, you can access

AN INTRODUCTION TO MAPLE 3

help by preceding a key word with the symbol ?. For instance, to learn more about the
function coeff, we would type:

?coeff

coeff(p, x)

coeff(p, x, n)

coeff(p, x^n)

#

Parameters

p - polynomial in x

x - variable (an expression)

n - (optional) an integer

#

Description

-The coeff function extracts the coefficient of x^n in the polynomial p.

.........

Maple provides some useful built-in data structures such as arrays and matrices. To work
with matrices as algebraic objects, however, one must include the linear algebra library by
typing the following command. Its output should contain the list of functions within the
library.

with(linalg);

We begin by defining an array. One way is the following.

n := 5:

arr := array(1..n):

arr[3] := "3rd":

print(arr);

[arr[1], arr[2], "3rd", arr[4], arr[5]]

In the case of matrices, we might create a 3× 3 matrix in two ways as follows.

M := matrix(3,3,[1,2,3,4,5,6,7,8,9]):

N := [[1,2,3],[4,5,6],[7,8,9]]:

evalb(M = N);

M[1,2] := 0:

evalm(M);

trace(M);

det(M);

evalm(det(M)*inverse(M));

false

[1 0 3]

M := [4 5 6]

[7 8 9]

15

-12

4 CHRISTOPHER J HILLAR

[-3 24 -15]

[6 -12 6]

[-3 -8 5]

This last example reveals that one must be careful when dealing with matrices and
equality in Maple. In general, you might need to use the function evalm to convert a matrix
from its data structure representation to its algebraic object (for instance, to evaluate
M +N as a matrix, one would type evalm(M+N)).

Yet another way to make a matrix (or array) is with a loop.

P := matrix(3,3):

for i from 0 to 2 do

for j from 1 to 3 do

P[i+1,j] := 3*i+j;

end;

end;

evalm(P);

creates the same matrix as M

To format the output of your worksheet, the command print is useful. Below, the
concatenation operator ‖ is used to combine objects into one string.

print("The number n has value " || n);

"The number n has value 5"

You can plot curves and surfaces in Maple with the plot command. Before getting
to more technical stuff, let’s create the pictures from the first chapter of the notes at
www.math.tamu.edu/~sottile/conferences/Summer_IMA07/Sottile.pdf.

with(plots):

plane curves

p := y^2-x^3-x^2:

implicitplot(p,x=-2..2,y=-2..2);

implicitplot(p+1/20,x=-2..2,y=-2..2);

implicitplot(p-1/20,x=-2..2,y=-2..2);

hyperboloids

hp := x*y+z;

hos := x^2-x+y^2+y*z;

implicitplot3d(hp,x=-2..2,y=-2..2,z=-2..2);

implicitplot3d(hos,x=-2..2,y=-2..2,z=-2..2);

solve({hos,hp},{x,y,z}); # finds intersection parametrically

2. Equation Solving in Maple

Maple has many algebraic and numerical tools for finding the solutions to systems of
(not necessarily polynomial) equations. Perhaps the simplest black-box solver is provided
by the appropriately named function solve. As a first example, we will solve the following
system of linear equations in x, y, z and u and free parameters a, b, c and d.

AN INTRODUCTION TO MAPLE 5

3x+ y + z − u = a

13x+ 8y + 6z − 7u = b

14x+ 10y + 6z − 7u = c

7x+ 4y + 3z − 3u = d

To input and solve this system in Maple, we execute the following line of code.

solve({3*x+y+z-u-a, 13*x+8*y+6*z-7*u-b, 14*x+10*y+6*z-7*u-c,

7*x+4*y+3*z-3*u-d},{x,y,z,u});

In general, the first input parameter to solve is a list of expressions presented in the
form {f1, . . . , fn} followed by a list of variables to “solve” for. In this case (and generally),
the output from the calculation is given as (sequences of) lists such as

{u = −(6/5a+ 4/5b+ 1/5c− 12/5d),

z = −(16/5a− 1/5b+ 6/5c− 17/5d),

y = −(3/5a+ 2/5b− 2/5c− 1/5d),

x = −(−6/5a+ 1/5b− 1/5c+ 2/5d)}
For those interested in a matrix approach to solving these equations, the following code

is appropriate.

M := [[3,1,1,-1],[13,8,6,-7],[14,10,6,-7],[7,4,3,-3]]:

v := matrix(4,1,[a,b,c,d]):

evalm(inverse(M)&*v); # &* is used to multiply two matrices

It is constructive to play around with the function solve to see what it does on various
types of inputs. For instance, how does it handle equations with an infinite number of
solutions or for which there are no solutions?

degenerate linear equation

solve({t*x + t^2*y - t, x + t*y - 1},{x,y});

{x = -t y + 1, y = y}

linear equation with no solution

solve({t*x + t^2*y - 0, x + t*y - 1},{x,y});

For the first example, Maple returns a solution indicating that y is a free parameter and
that x depends on this parameter in the manner indicated. In the second example, solve
outputs nothing, indicating that there is no solution to the system of equations. In general,
however, one must be skeptical of the output from the function solve. It does its best
with the tools it has, but there is no guarantee that it is giving you all correct solutions.
In the simple example below, Maple (incorrectly) does not exclude the case (x, y) = (0, 0)
in its list of solutions.

solve({y/x},{x,y});

{x = x, y = 0}

6 CHRISTOPHER J HILLAR

A companion to the function solve is a numerical solver fsolve which is called in the
same way as solve. An important difference, however, is that the number of equations
must match the number of variables or else an error message will result.

fsolve(x^3-3*x+1,x);

-1.879385242, .3472963553, 1.532088886

evalf(fsolve(x^3-3*x+1,x),20);

-1.8793852415718167681, 0.34729635533386069770, 1.5320888862379560704

Above, we used another function evalf to extend the accuracy of our solution to 20
digits. This function is also important when one has a symbolic solution to an equation
that one wants to see approximately. For instance, we could have solved the above equation
first symbolically and then approximated the formula numerically.

solve(x^3-3*x+1,x);

evalf(%);

1.532088886 - 0.1*10^(-9) I, -1.879385241 - 0.1732050808*10^(-9) I, ...

The careful reader will notice that the output from these two examples is different –
there is a very small imaginary part (the complex number

√
−1 is denoted by I in Maple)

that is detected by the second command. Moreover, increasing the number of digits of
accuracy does not remove the problem. So how do we resolve this issue? Fortunately,
there is a built-in function called realroot which gives (provably correct) bounding boxes
for the real roots of univariate polynomials.

e := 1:

realroot(x^3-3*x+1, e);

[[0, 1], [1, 2], [-2, -1]]

The output here indicates that there are at least three real roots to the given equation
and that they lie inside each of the indicated intervals. The variable e is used to bound
the size of the isolating intervals. Setting e = 1/100, for instance, will produce bounding
intervals that are of length at most 1/100:

[[
11

32
,

45

128
], [

49

32
,
197

128
], [−241

128
,−15

8
]]

We close this section with the function eliminate, which is very useful for human-guided
equation solving.

intersecting hyperboloid and sphere

hyp := x^2+(y-3/2)^2-z^2-1/4;

sph := x^2+y^2+z^2-4;

eliminate({hyp, sph}, x);

[{x = RootOf(_Z^2+y^2+z^2-4)}, {-6+3*y+2*z^2}]

In this example, the variable x is eliminated from the equations, resulting in the new
equation −6+3y+2z2 = 0 listed in the output. Thus, we see that with z a free variable, we
have y = (6−2z2)/3 and x is given by the funny expression x = RootOf(Z2 +y2 +z2−4).
Although confusing, this is just Maple’s way of symbolically representing roots of univariate

AN INTRODUCTION TO MAPLE 7

polynomials. Translated into mathematics, the expression is simply saying that given y
and z, the value for x can be chosen to be a root of the equation Z2 +y2 +z2−4 = 0. While
this might seem cumbersome, it is unavoidable. For instance, how would one represent and
manipulate the solution to an unsolvable quintic?

soln := solve(x^5-x+1,x);

a := soln[1];

simplify(a^10);

There are other solving tools available such as the Gröbner basis libraries included in
later versions of Maple. However, we refer to www.mapleprimes.com/blog/roman-pearce/

improvements-to-maple-11-groebner which has numerous examples displaying the power
of Faugere’s FGb program implemented in Maple 11.

3. Basic Programming in Maple

We have already encountered some of the building blocks for programming in Maple. For
instance, we saw how to use for loops to fill the entries of a matrix. We will now explain
how to write our own callable functions in Maple. Our first example will be a function to
compute the factorial n! of an integer n.

fact := proc(n)

local i,prod;

if (n < 0) then

return("n must be positive");

end;

prod := 1;

for i from 1 to n do

prod := i * prod;

end;

return prod;

end;

The first line above tells Maple that the name of our function is fact and that it takes
one input. To call our function once we have entered the text above into Maple, we simply
type

fact(3);

fact(-1);

6

"n must be positive"

The second line in our procedure is there so that Maple knows only to use the indicated
variables within a function call to fact and nowhere else in your worksheet. For a recursive
implementation of n!, one has the following code.

fact := proc(n)

if (n = 1) then

return(1);

end;

return n * fact(n-1);

8 CHRISTOPHER J HILLAR

end;

Another type of loop is the while loop.

collatz := proc(n)

local m,count;

count := 0;

m := n;

while (m > 1) do

if (modp(m,2) = 0) then

m := m/2;

else

m := 3*m+1;

end;

count := count + 1;

end;

return count;

end;

This function returns the number of iterations required to bring an integer n down to
1 using the Collatz recurrence. It is a deep open problem to determine if the while loop
above always breaks.

Finally, we mention a useful package combinat in Maple for indexing over permutations
and combinations.

with(combinat);

indexing over all combinations

C := choose(5,2);

for c in C do

print(c);

end;

indexing over all permutations

P := permute(3);

for p in P do

print(p);

end;

indexing over all subsets

S := subsets({x,y,z}):

while not S[finished] do

S[nextvalue]()

end;

AN INTRODUCTION TO MAPLE 9

4. Exercises

(1) Write a function which takes as input a square matrix and its size and returns its
trace.

(2) Find all solutions to the system {x2 + y2 + z2 = 1, x2 + z2 = y, x = z}.

(3) How many real roots does the equation x100 − x51 + x − 2 have? (Could you have
predicted this before-hand?).

(4) Find out how to factor polynomials in Maple and then factor x4 + 4. Compare this
with the following command: evala(AFactor(x4 + 4));

(5) Suppose that we have Maple variables x[1], x[2], and x[3]; we shall consider poly-
nomials f in these three variables. Write a function that takes as input a polynomial f
and a permutation σ (expressed in word form as an array such as [1,3,2]) and returns the
polynomial produced from f by permuting the variables according to σ. For example, if
f = x[1]2 + x[2]x[3] and σ = [3, 1, 2], then we would like to return

σf = x[3]2 + x[1]x[2].

(6) a) Let f = x3 − 3x + 1. Look up the Maple commands to find the Galois group
of f . b) Let a be a root of f in the interval [1, 2]. Given that there are polynomials g(t)
and h(t) with rational coefficients such that f(x) = (x − a)(x − g(a))(x − h(a)), find the
polynomials g and h.

(7) If you are familiar with Gröbner bases, look up how Maple handles these computa-
tions. Work out explicitly some Gröbner bases for the polynomials {xy+z, x2−x+y2+yx}
using different term orders. Compare the performance of other examples with that of Sin-
gular and Macaulay 2.

Department of Mathematics, Texas A&M University, College Station, TX 77843-3368,
USA

E-mail address: chillar@math.tamu.edu
URL: http://www.math.tamu.edu/~chillar

